фокусами эллипса. Так вот, эллипс можно определить как геометрическое место точек, сумма расстояний которых от двух фокусов есть величина постоянная. По нашей фигуре эта постоянная равна длине общей касательной к двум шарам. Кстати сказать, не так трудно представить себе, что прямые, соединяющие фокусы с любой точкой эллипса (его радиусы-векторы), каждый раз образуют между собой некоторый угол. Так вот биссектриса этого угла как раз будет нормалью эллипса к данной точке, а следовательно, найти и касательную к эллипсу не очень сложно. В таком случае гипербола есть геометрическое место точек, разность расстояний которых от двух фокусов есть величина постоянная. Вот попробуй нарисуй чертеж с конусом и двумя шарами, при помощи которого это было бы легко доказать. Из этого нового определения эллипса получается простой способ черчения эллипса. В двух точках — фокусах — ты накалываешь на бумагу две кнопки. Потом берешь нитку и связываешь ее колечком так, чтобы вся длина этого кольца была pавна расстоянию между фокусами плюс та самая постоянная сумма расстояний от точек эллипса до двух фокусов. Надеваешь эту связанную
Вот как чертится эллипс.
Кто скажет, в каком отношении друг к другу находятся отрезки
— 375 —
нитку на кнопки, а потом поддеваешь ее кончиком карандаша, натягиваешь и чертишь. Карандаш тебе как раз вычертит эллипс. Чем ближе поставить при одной и той же нитке фокусы-кнопки, тем больше эллипс будет походить на круг.
Чем дальше их расставить, тем более продолговатым будет эллипс. Если поставить кнопки совсем рядом, а нитку взять подлинней, то эллипс трудно будет отличить от круга, то есть когда фокусы сходятся в одной точке, эллипс превращается в круг. А если ты так далеко расставишь кнопки, что нитка совсем натянется, эллипс превратится в отрезок прямой.
— Так, — отвечал Илюша. — Обязательно попробую. Эллипс ведь очень красивая фигура! Ну, а если взять не сумму расстояний до двух точек и не разность, а, например, произведение?
— Тогда получится овал или восьмерка. Эта фигура называется лемнискатой. Ее построил математик Яков Бернулли. Уравнение этой кривой будет не второго порядка, как все конические сечения, а четвертого.
— Ишь какая важная!
— Это еще невелика важность, — ответил, усмехнувшись, Радикс.
— А начертить параболу и гиперболу труднее, чем эллипс?
Вот как надо чертить гиперболу.
— Нет, — отвечал Радикс, — не так уж трудно. Гиперболу, можно начертить так. Возьмем линейку и закрепим ее в одном из фокусов одним концом так, чтобы она могла вращаться вокруг фокуса, как на шарнире. Гипербола определяется, как мы говорили, постоянной разностью между расстояниями от каждой ее точки до двух фокусов. Назовем эту разность 2
Так вот, берем линейку, которая должна быть длиннее расстояния 2
— 376 —
Прошу любить да жаловать! Это сама Лемниската Яковлевна Бернулли. Основное ее свойство в том, что произведение [(
прикрепляем к свободному концу линейки. Теперь, если натягивать кончиком карандаша нитку по линейке и в то же время поворачивать линейку около фокуса, карандаш начертит гиперболу.
— Это я тоже вычерчу! — отвечал Илюша. — А параболу?
— А параболу чертят при помощи линейки и угольника. Ты ставишь линейку по директрисе параболы и прикладываешь к ней вплотную угольник малым катетом. Потом берешь нитку, равную по длине большому катету, и закрепляешь ее с одной стороны в фокусе параболы кнопкой, а с другой — в конце большого катета, у острого угла. Натягиваешь нить карандашом, а в то же время заставляешь малый катет угольника скользить по линейке.
— Ну хорошо, — сказал Илюша. — А как же
Можно увидеть Лемнискату, если удастся достать арагонитовую либо селитряную пластинку и рассматривать ее в поляризованном свете.
— 377 —
решается уравнение третьей степени, то есть кубическое? Мы чертили график этого уравнения и находили максимум и минимум ординаты. А как найти корни?
— В частных случаях иногда кубическое уравнение решается довольно просто. Вот задача индусского математика Бхаскара Ачариа, жившего в двенадцатом веке нашей эры:
Достаточно в левой части прибавить и вычесть восемь, чтобы получить точный куб:
(
(
Индусский математик нашел только один корень. Другие два будут комплексные, и их легко найти, выделив один из множителей нашего четырехчлена, то есть:
Вот как чертят параболу.
— 378 —