Читаем Волшебный двурог полностью

фокусами эллипса. Так вот, эллипс можно определить как геометрическое место точек, сумма расстояний которых от двух фокусов есть величина постоянная. По нашей фигуре эта постоянная равна длине общей касательной к двум шарам. Кстати сказать, не так трудно представить себе, что прямые, соединяющие фокусы с любой точкой эллипса (его радиусы-векторы), каждый раз образуют между собой некоторый угол. Так вот биссектриса этого угла как раз будет нормалью эллипса к данной точке, а следовательно, найти и касательную к эллипсу не очень сложно. В таком случае гипербола есть геометрическое место точек, разность расстояний которых от двух фокусов есть величина постоянная. Вот попробуй нарисуй чертеж с конусом и двумя шарами, при помощи которого это было бы легко доказать. Из этого нового определения эллипса получается простой способ черчения эллипса. В двух точках — фокусах — ты накалываешь на бумагу две кнопки. Потом берешь нитку и связываешь ее колечком так, чтобы вся длина этого кольца была pавна расстоянию между фокусами плюс та самая постоянная сумма расстояний от точек эллипса до двух фокусов. Надеваешь эту связанную


Вот как чертится эллипс.

Кто скажет, в каком отношении друг к другу находятся отрезки F1E и F2E — с одной стороны, и большая ось эллипса AB — с другой? Карандаш уверяет, что стоит ему дойти до точки…



— 375 —

нитку на кнопки, а потом поддеваешь ее кончиком карандаша, натягиваешь и чертишь. Карандаш тебе как раз вычертит эллипс. Чем ближе поставить при одной и той же нитке фокусы-кнопки, тем больше эллипс будет походить на круг.

Чем дальше их расставить, тем более продолговатым будет эллипс. Если поставить кнопки совсем рядом, а нитку взять подлинней, то эллипс трудно будет отличить от круга, то есть когда фокусы сходятся в одной точке, эллипс превращается в круг. А если ты так далеко расставишь кнопки, что нитка совсем натянется, эллипс превратится в отрезок прямой.

— Так, — отвечал Илюша. — Обязательно попробую. Эллипс ведь очень красивая фигура! Ну, а если взять не сумму расстояний до двух точек и не разность, а, например, произведение?

— Тогда получится овал или восьмерка. Эта фигура называется лемнискатой. Ее построил математик Яков Бернулли. Уравнение этой кривой будет не второго порядка, как все конические сечения, а четвертого.

— Ишь какая важная!

— Это еще невелика важность, — ответил, усмехнувшись, Радикс.

— А начертить параболу и гиперболу труднее, чем эллипс?

Вот как надо чертить гиперболу.


— Нет, — отвечал Радикс, — не так уж трудно. Гиперболу, можно начертить так. Возьмем линейку и закрепим ее в одном из фокусов одним концом так, чтобы она могла вращаться вокруг фокуса, как на шарнире. Гипербола определяется, как мы говорили, постоянной разностью между расстояниями от каждой ее точки до двух фокусов. Назовем эту разность 2а и расстояние между фокусами 2с, причем с всегда больше а. У эллипса, кстати сказать, будет как раз наоборот, если называть там 2а суммой соответствующих расстояний.

Так вот, берем линейку, которая должна быть длиннее расстояния 2с, и нитку, длина которой равна длине линейки минус 2а. Один конец нитки закрепляем кнопкой в свободном фокусе (то есть не в том, в котором мы закрепили линейку), а другой ее конец

— 376 —

Прошу любить да жаловать! Это сама Лемниската Яковлевна Бернулли. Основное ее свойство в том, что произведение [(F1A) (AF2)] есть величина постоянная, то есть площадь квадрата со сторонойF1Oравна площади прямоугольника со сторонамиF1АиAF2.


прикрепляем к свободному концу линейки. Теперь, если натягивать кончиком карандаша нитку по линейке и в то же время поворачивать линейку около фокуса, карандаш начертит гиперболу.

— Это я тоже вычерчу! — отвечал Илюша. — А параболу?

— А параболу чертят при помощи линейки и угольника. Ты ставишь линейку по директрисе параболы и прикладываешь к ней вплотную угольник малым катетом. Потом берешь нитку, равную по длине большому катету, и закрепляешь ее с одной стороны в фокусе параболы кнопкой, а с другой — в конце большого катета, у острого угла. Натягиваешь нить карандашом, а в то же время заставляешь малый катет угольника скользить по линейке.

— Ну хорошо, — сказал Илюша. — А как же

Можно увидеть Лемнискату, если удастся достать арагонитовую либо селитряную пластинку и рассматривать ее в поляризованном свете.

— 377 —

решается уравнение третьей степени, то есть кубическое? Мы чертили график этого уравнения и находили максимум и минимум ординаты. А как найти корни?

— В частных случаях иногда кубическое уравнение решается довольно просто. Вот задача индусского математика Бхаскара Ачариа, жившего в двенадцатом веке нашей эры:

х3 — 6х2 + 12x; = 35.

Достаточно в левой части прибавить и вычесть восемь, чтобы получить точный куб:

(х3 — 6x2 + 12x — 8) + 8 = 35,

х3 — 6х2 + 12х — 8 = 27;

(x — 2)3 = 27;

х — 2 = 3; х = 5.

Индусский математик нашел только один корень. Другие два будут комплексные, и их легко найти, выделив один из множителей нашего четырехчлена, то есть:


Вот как чертят параболу.

— 378 —

x3 — 6x2+ 12x — 35 = 0;

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки