Читаем Волшебный двурог полностью

Ты видишь, что эта кривая (а это парабола!) как раз проходит через наивысшую точку, когда икс равен девяти. Что означает с геометрической точки зрения то обстоятельство, что для икса, равного девяти, игрек-штрих равен нулю? Дело в том, что игрек-штрих показывает, как меняется угловой коэффициент касательной к параболе. А ты, наверно, помнишь, что этот коэффициент равен тангенсу угла наклона касательной по отношению к положительному направлению оси абсцисс? Ты, наверное, помнишь и то, что когда кривая достигает максимума, то касательная, естественно, располагается…

— Параллельно оси иксов, то есть горизонтально! — подхватил Илюша.

— Верно! Ну, а теперь скажи мне, какой она в таком случае образует угол с осью абсцисс?

— Никакого угла она не образует!

— Никакого?.. — переспросил Радикс. — Таким образом, если тебя кто-нибудь попросит сказать, тепло ли сегодня на улице, то ты посмотришь на градусник за окном, увидишь, нуль градусов, и скажешь, что сегодня никакой температуры не наблюдается. Так я тебя понял?

— Нет, — сказал Илюша, смутившись, — конечно, так сказать нельзя. Тут я должен сказать, что угол этот заключает в себе нуль градусов.

— Как раз! — отвечал Радикс. — А теперь ответь мне, чему равен тангенс нуля градусов?

— Нулю, конечно!

— Ну, так вот игрек-штрих и дает этот самый нуль. Вот как производится изыскание максимумов или минимумов! Это одна из самых важных задач в дифференциальном исчислении. Этим делом очень много и плодотворно занимались Ферма и Паскаль. Впрочем, задача, которую мы сейчас разбирали, была решена еще греческим математиком Никомахом во втором веке нашей эры.

— А на самом деле, когда математики ищут максимум, они тоже так поступают, как ты мне сейчас показывал, или ты это только для меня придумал?

— Так делали в старое время, во времена Ферма, например.

— 382 —

А сейчас это делают немножко не так. Смысл действий, впрочем, один и тот же.

— А как это теперь делается?

— Ну что ж, давай попробуем одолеть и эту премудрость. Если мы возьмем ту же самую функцию да еще припомним то, как мы рассуждали по вопросу о превращении секущей в касательную в предыдущей схолии, то справиться с этим будет не так уж трудно. Для этого нам необходимо, как ты, вероятно, помнишь, исследовать параболу с точки зрения изменения… Ну-ка, скажи мне: изменения чего?

— Я думаю, — довольно бойко отвечал Илюша, — что речь пойдет об изменении скорости, с которой растет функция.

— Правильно. Итак, приступим к изучению изменения скорости изменения функции. Для этого дадим независимой переменной, то есть иксу, некое приращение, которое мы обозначим через Δх. Здесь Δ — не множитель, а заменяющая слово «приращение» прописная греческая буква «дельта», которая читается, как наше «Д». А читается формула просто: «дельта икс». Приращение это не очень большое, не очень и маленькое, но, в общем, конечное. Теперь поскольку икс, независимая переменная, получил некое приращение (ну, допустим, что икс у нас равнялся двум, а теперь будет два и нуль-нуль-три после запятой), то, так как игрек есть переменная…

— Зависимая! — подсказал проворно Илья.

— … а следовательно, и она должна тоже… Что тоже?

— Тоже получит приращение.

— Ответ достойный. И мы назовем это приращение Δу, то есть «дельта игрек». Когда мы найдем приращения, то возьмем их отношение. Если все это изобразить на чертеже, то легко заметить, что получается тот же самый замечательный характеристический Паскалев прямоугольный треугольник, который ты видел на странице… (не спутай только этот Паскалев треугольник с другим, биномиальным Паскалевым треугольником, о котором шла речь в Схолии Седьмой!

Не забудь, что это характеристический дифференциальный треугольник, введенный впервые Архимедом!). Катетами его будут Δх и Δу, а гипотенузой будет прямая, которая рассечет нашу кривую и которую за это самое люди добрые зовут…

— Секущей, — отвечал мальчик.

— А теперь скажи, каков смысл этого отношения?

— По-моему, это будет тангенс угла α, — сказал Илюша.

— Несомненно. Только я тебя спрашиваю не про то, что это будет, а что это означает.

— Мне кажется, что этот тангенс как-то, может быть, и

— 383 —

грубо, но все же измеряет ту же самую скорость. Я заключаю это из того, что если все построение сдвинуть по абсциссе вправо или влево, не изменяя размеров приращения икса, то наклон секущей по отношению к положительному направлению оси абсцисс, — а следовательно, и тангенс соответствующего угла, — изменится. И изменится в соответствии с изменением скорости роста нашей функции.

— Превосходно, молодой человек! Но это все же еще не совсем точно. Давай-ка вычислим, чему же равно это отношение. Пусть до приращения икс достиг значения, которое мы обозначим просто х, а соответственный игрек — аналогично тоже просто буквой у, и пусть переменные, получив и та и другая свои приращения, получат значения x1 и у1. В таком случае можно написать, что

Δх = x1х;

Δy = y1y = (18x1x12) — (18xх2),

а следовательно, отношение их будет

Δx / Δy = (18x1х12 — 18x + х2) / (x1x)


Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки