Это более чем “необходимая” причина, в силу которой гены остались в митохондриях: нужно, чтобы эти гены были рядом с биоэнергетическими мембранами, где бы те ни находились. Поразительно, но у митохондрий неизменно сохраняются гены, принадлежащие к одному и тому же маленькому подсемейству, характерному для всех способных к дыханию эукариот. В тех редких случаях, когда клетки теряют сразу все митохондриальные гены, они теряют способность дышать. Гидрогеносомы и митосомы (специализированные органеллы, которые произошли от митохондрий и встречаются у архезоев) утратили абсолютно все гены – и в результате потеряли возможность пользоваться энергией хемиосмотического сопряжения. А у гигантских бактерий собственные гены (точнее, полные геномы) расположены совсем рядом с биоэнергетическими мембранами. На мой взгляд, наиболее показательный пример – это цианобактерии с их складчатыми внутренними мембранами. Если гены необходимы для контроля над дыханием, то цианобактерии должны иметь множество полных копий своего генома, как и гигантские бактерии – пусть цианобактерии и мельче. Так и есть: у наиболее сложных цианобактерий до нескольких сотен копий генома. Как и в случае гигантских бактерий, количество доступной энергии на ген у них ограничено: они не могут иметь геном, который хоть сколько-нибудь приближается по длине к ядерному эукариотическому, и вынуждены накапливать маленькие бактериальные геномы.
Вот причина, по которой бактерии не могут достичь размеров эукариот. Если просто переместить биоэнергетические мембраны внутрь и увеличить площадь их поверхности, это не сработает: нужные гены должны оказаться рядом с мембранами. В реальности же, не прибегая к эндосимбиозу, гены можно поместить туда лишь в составе полного генома. С позиции “энергии на ген” нет никакой пользы в том, чтобы увеличиваться в размерах: имеет смысл расти лишь для того, чтобы стал возможен эндосимбиоз. Лишь тогда можно будет терять гены, а сокращение генома митохондрий в несколько раз сделает возможным разрастание ядерного генома на порядки, вплоть до эукариотических размеров.
Можно рассмотреть и другую возможность: использовать бактериальные плазмиды – полуавтономные кольцевые ДНК, в некоторых случаях несущие огромное количество генов. Почему бы не разместить дыхательные гены на одной крупной плазмиде, а после расположить множественные копии этой плазмиды рядом с мембранами? С этим сопряжены трудноразрешимые логические проблемы, но может ли это в принципе работать? Я думаю, что нет. Сам по себе крупный размер не дает прокариотам преимуществ, и иметь избыточное количество АТФ бессмысленно. Маленькие бактерии не страдают от недостатка АТФ. Чуть больший размер и чуть больше АТФ не даст преимущества в конкурентной борьбе – лучше быть немного мельче, иметь достаточное количество АТФ и быстрее делиться. Второй недостаток самого по себе увеличения в размерах – это необходимость организовать пути доставки к удаленным регионам клетки. Большой клетке необходимо транспортировать грузы во все ее части, и эукариотам приходится делать именно это. Но такие транспортные системы появились не за один день: для этого потребовалось множество поколений, а в течение такого долгого времени крупный размер должен был давать какие-нибудь дополнительные преимущества. Поэтому плазмиды не подходят: идея выворачивается наизнанку. Гораздо более простое решение проблемы снабжения – создать множество копий полного генома, чтобы каждая контролировала небольшую часть объема цитоплазмы, равную объему одной бактериальной клетки – так, как у гигантских бактерий.
Как эукариотам удалось преодолеть ограничения в размерах и построить сложные транспортные системы? Что отличает клетку с многочисленными митохондриями, каждая из которых имеет геном размером с бактериальную плазмиду, от гигантской бактерии с множеством плазмид, разбросанных по клетке для контроля над дыханием? Ответ заключается в том, что происхождение эукариот не имело отношения к АТФ: эту идею высказали Билл Мартин и Миклош Мюллер в рамках гипотезы о первой эукариотической клетке. Мартин и Мюллер предположили, что у клетки-хозяина и ее эндосимбионтов существовала экологическая синтрофия: они обменивались субстратами для роста, а не только энергией. Водородная гипотеза гласит, что первые эндосимбионты снабжали своих клеток-хозяев необходимым для роста водородом. Не будем останавливаться на деталях: важно, что без субстрата клетки вообще не могут расти. Эндосимбионты обеспечивают клетку