А. Популяция внутриклеточных бактерий, обитающих в организме цианобактерий. Волнистые внутренние мембраны в правой части клетки – это мембраны тилакоидов, место, где у цианобактерий происходит фотосинтез. Клеточная стенка выглядит как окружающий клетку темный контур. Сверху клетка покрыта прозрачной желеобразной оболочкой. Внутриклеточные бактерии видны внутри светлых областей, которые можно принять за фагоцитарные вакуоли, но, по всей вероятности, это результат усыхания препарата. Клетки с клеточной стенкой не способны заглатывать другие клетки (фагоцитоз). Как бактерии попали внутрь – загадка, но они определенно там. Нет сомнений, что бактерии внутри свободноживущих бактерий – явление редкое, но вероятное.
Б. Популяции гамма-протеобактерий внутри клеток-хозяев – бета-протеобактерий, которые сами живут в клетках мучнистого червеца. На микрофотографии
Потеря генов имеет большое значение. Эндосимбионтам она выгодна, поскольку ускоряет их рост. Кроме этого, она позволяет тратить меньше АТФ. Поставим мысленный эксперимент. Вообразим клетку, в которой живет 100 эндосимбионтов. Каждый эндосимбионт начинает свою жизнь как обычная бактерия, которая со временем теряет гены. Предположим, что изначально такая бактерия имеет бактериальный геном, содержащий 4 тыс. генов, и в течение жизни она теряет 200 генов (5 % генома). Скорее всего, в первую очередь будут утрачены гены синтеза клеточной стенки, которые не нужны для жизни внутри другой клетки. Каждый из 200 генов кодирует белок, на синтез которого нужно затратить энергию. Сколько энергии будет сэкономлено, если эти белки
Конечно, у клетки нет необходимости тратить сэкономленный АТФ на что-либо конкретное (хотя некоторые цели есть), но рассмотрим, на что в принципе можно потратить АТФ. Относительно простой признак, отличающий эукариот от остальных организмов – динамический внутренний цитоскелет, способный перестраиваться и изменять свою форму, что обеспечивает движение клеток и внутриклеточный транспорт. Главный компонент эукариотического цитоскелета – белок актин. Сколько актина можно синтезировать при потоке АТФ 580 тыс. молекул в секунду? Актин – это филамент, состоящий из мономеров, соединенных в цепь. Две такие цепи, скрученные в спираль, образуют филамент. Каждый мономер состоит из 374 аминокислот. В одном микрометре актинового филамента содержится 2 × 29 мономеров. Чтобы построить 1 микрометр актинового филамента, нужно 131 тыс. молекул АТФ (что теоретически позволяет построить за секунду около 4,5 микрометра актина). Если вам показалось, что этого маловато, я напомню, что обычная длина бактериальных клеток – пара микрометров[76]
. Поэтому энергии, сэкономленной эндосимбионтами при потере генов (5 % генов), достаточно для развития динамического цитоскелета, что, несомненно, и произошло. Имейте в виду, что 100 эндосимбионтов на клетку – это довольно скромная оценка. У некоторых крупных амеб в клетке минимум 300 тыс. митохондрий.Но эндосимбионты пошли дальше и утратили не 5 % генов, а гораздо больше. Митохондрии потеряли почти все свои гены: у нас и прочих животных в митохондриях сохранилось лишь 13 белок-кодирующих генов. Если считать, что предки митохондрий не слишком отличались от современных α-протеобактерий, то их геном должен был кодировать около 4 тыс. генов. Вступив в эндосимбиоз и превратившись в митохондрии, они потеряли более 99 % своего генома. Если мы снова рассчитаем энергетический выигрыш, то получим: если 100 эндосимбионтов потеряют 99 % генов, это позволит сэкономить около 1 триллиона молекул АТФ за 24-часовой жизненный цикл – или 12 млн молекул АТФ в секунду! Но митохондрии не экономят энергию – они производят АТФ. По способности к производству АТФ митохондрии не уступают своим предкам, но в то же время они снизили собственную энергетическую стоимость настолько, насколько было возможно. В результате эукариоты приобрели такую энергию, как у множества бактерий сразу – и при этом сэкономили на синтезе белка. Вернее, они стали получать энергию за чужой счет.