Кунин предположил, что если на ранних этапах эволюции эукариот действительно происходила активная инвазия интронов, мобильные интроны должны были встраиваться в случайные позиции генов. Древние паралоги в тот период как раз активно дуплицировались, и, если волна ранней инвазии интронов тогда еще не утихла, мобильные интроны должны были встраиваться в новые гены – члены разрастающегося семейства паралогичных генов. Дупликации генов семейств поздних паралогов произошли уже после окончания ранней инвазии интронов, поэтому в новых копиях этих генов интроны должны были остаться в тех же позициях. Иными словами, позиции интронов в древних паралогах должны быть существенно менее консервативными. И это действительно так. Позиции почти всех интронов в поздних паралогах консервативны, в отличие от позиций интронов в древних паралогах – именно так, как было предсказано.
Все это наводит на мысль, что предки эукариот действительно пострадали от инвазии мобильных интронов, причем их заразили интронами собственные эндосимбионты. Но почему интроны так размножились у предков эукариот, если и бактерии, и археи, как правило, держат их в ежовых рукавицах? Этому есть два объяснения, и, вполне возможно, верны они оба. Согласно первому, предки эукариот – по сути еще прокариоты, точнее
Этот процесс нелегко остановить, он продолжается и по сей день: наши собственные ядерные геномы содержат тысячи обрывков митохондриальной ДНК –
Вторая причина активного размножения интронов на ранних этапах эволюции эукариот – слабое давление отбора. Отчасти это следствие того, что в малой популяции ослабленных клеток конкуренция между особями слабее, чем в огромных популяциях здоровых клеток. Но первые эукариоты обладали поистине небывалой устойчивостью к инвазии интронов. В конце концов, источником этих интронов были эндосимбионты – будущие митохондрии: энергетический рог изобилия и вместе с тем генетическая ноша. Такая генетическая и энергетическая обуза, как интроны, обходится бактериям недешево: маленькие клетки, у которых ДНК немного, воспроизводятся быстрее, чем крупные клетки с избыточным количеством ДНК. Бактерии стремятся оптимизировать свои геномы до минимально возможного размера. У эукариот же сильная асимметрия размеров геномов: их ядерные геномы свободно разрастаются за счет уменьшения геномов эндосимбионтов. Разрастание генома клетки-хозяина не преследует никакой цели – просто отбор не препятствует увеличению размеров генома, как происходит у бактерий. Снижение действия отбора на размер генома – палка о двух концах. Это позволяет эукариотам приобретать тысячи новых генов путем дупликации и рекомбинации – и дает возможность выжить с огромным количеством генетических паразитов. Эти два процесса неразрывно связаны. Эукариотические геномы оказались нашпигованы интронами просто потому, что это стало возможно с энергетической точки зрения.