В верхней точке траектории нас ждет необычный и удивительный момент, когда вы уже перестали подниматься, но еще не начали падать. В этот краткий «чих» времени вы лишены движения, «путешествуете» со скоростью ноль метров в секунду.
А что, если мы снабдим вас ракетными ускорителями? Если когда-то вы были всего лишь просто шаром из воловьей кожи, то теперь стали оснащенным реактивным двигателем шаром из воловьей кожи. С помощью реактивной тяги вы взмываете вверх, а потом несетесь вниз. Не является ли это другим
На самом деле нет. Разумеется, то, что когда-то занимало целую секунду, теперь происходит за какие-то ее доли, но общая схема сохраняется. После того как ваше движение вверх замедлилось, и до того, как началось движение вниз, существует единственный момент смены направления, когда ваша мгновенная скорость равна нулю.
Только если очень напрячь свое математическое воображение, мы можем представить другой вариант развития событий, скажем, такой:
Тут происходит нечто невероятное. Вы переходите непосредственно от движения вверх к движению вниз без какого-либо промежуточного момента, о котором стоило бы говорить: никакой паузы, никаких пропусков хода, никаких удлинений седьмого иннинга.
Даже приближение – наш стандартный прием для всего, что касается математического анализа, – не вносит никакой ясности. Не важно, как близко вы смотрите или как замедляете видео, – этот момент перехода остается загадкой. Миллиардной долей секунды ранее бейсбольный мяч летел со скоростью 10 м/с вверх, а миллиардную долю секунды спустя он летит со скоростью 10 м/с вниз. Нет замедления, нет ускорения, только неожиданная смена курса, такая внезапная и таинственная, что сознание едва ли сможет ее уловить.
С какой скоростью бейсбольный мяч движется в этот момент? На самом деле движение настолько ничтожно, что само понятие скорости теряет смысл. В это мгновение бейсбольный мяч не имеет скорости. На жаргоне математического анализа функция его положения
Теперь, после неожиданного рикошета, давайте вернемся к броуновскому движению. То, чего никак не может сделать бейсбольный мяч, частицы при броуновском движении, кажется, делают каждый день. Постоянно.
Изолированная точка недифференцируемости, единственное резкое изменение в движении, которое в иных случаях растягивается по гиперболе, – это само по себе плохо. Но через полвека после Броуна математик Карл Вейерштрасс создал куда более пугающую математическую функцию. Он не ограничился одной недифференцируемой точкой, и даже двумя, и двадцатью. Он придумал функцию, которая является недифференцируемой
На графике франкенфункции Вейерштрасса каждая отдельная точка имеет острый угол.
Пытаетесь представить это? Я тоже, друзья мои, я тоже! Самое лучшее, что я могу предложить, – это некоторое приближение: первые несколько шагов по эволюционной лестнице, которые через бесконечное восхождение ведут к демоническому дикобразу Вейерштрасса.
Давайте разберемся с природой этого ужаса. Это единственная, неразрывная кривая без скачков и пробелов. Но она настолько зубчатая и непутевая, что ни человеческая рука, ни графическое программное обеспечение не могут ее нарисовать. Этот находящийся за границами воображения монстр, как пишет математик Уильям Данхэм, «забил последний гвоздь в гроб геометрического восприятия как надежного основания математического анализа».
Эмиль Пикар, французский математик, выражал глубокое сожаление по поводу этого изменения. «Если бы Ньютон и Лейбниц могли только подумать, что неразрывные функции не обязательно должны иметь производную, – заверял он, – дифференциальное исчисление никогда бы не было изобретено». Еще один французский математик Шарль Эрмит высказался еще более беспощадно: «Я с ужасом отворачиваюсь от этого прискорбного явления, которое представляют собой функции, не имеющие производных».
В истории математического анализа дьявол Вейерштрасса с заостренными отметинами на лице олицетворяет собой точку, где произошел резкий разворот, внезапное изменение направления.
В такие времена может показаться, что математика вначале потеряла голову где-то в облаках, а потом потеряла облака под своим собственным задом. Кого заботят невозможные детали, все эти абстракции, которые нельзя даже представить? Не охотился ли Вейерштрасс из любви к искусству всего лишь за каким-то философским понятием, рассчитанным на дешевый успех, презирая главное предписание о том, какой должна быть математика? Ну, вы знаете, полезной.
Виновен по всем пунктам. «Это действительно так, – говорил Вейерштрасс, – нельзя быть настоящим математиком, не будучи немного поэтом».
И тем не менее, если вы с детства привыкаете к существованию резких поворотов, возможно, вы увидите, куда они ведут. Эта недифференцируемость повсюду, характерная черта, которая делает шипастого питомца Вейерштрасса таким пугающим и нереальным, особенность, которая ошарашила целое поколение математиков… В общем, именно так и работает наша модель броуновского движения.