Читаем Всё о космических путешествиях за 60 минут полностью

Скафандры защищают космонавтов от космического вакуума, когда они выходят в открытый космос, и представляют собой аварийный резерв в остальное время. Большую часть полета экипаж пребывает в относительной безопасности на борту космического корабля, который находится под давлением и генерирует собственный кислород из ряда источников. Во время кратковременных космических полетов используются обычные баллоны с кислородом. На МКС газ производится путем пропускания электрического тока через воду, чтобы разделить ее на водород и кислород, при этом нежелательный водород выпускается в космос. Воздух на космической станции прокачивается через фильтры для устранения запахов и загрязнений и проходит через холодные металлические пластины для удаления влаги. Устройства, известные как «СО2-скрубберы», поглощают углекислый газ, который неизбежно вырабатывается при дыхании космонавтов. В них происходит взаимодействие углекислого газа с гидроксидом лития, в результате чего образуется карбонат лития и вода.



Генераторы кислорода тоже не застрахованы от сбоев. В 1997 году систему, использовавшуюся на советской космической станции «Мир», уничтожил пожар, и в результате команда, находившаяся там, столкнулась с перспективой отсутствия воздуха для дыхания. Космонавты прибегли к аварийным свечам из перхлората лития, которые выделяют кислород при горении. Канистры с перхлоратом лития до сих пор хранятся на МКС в качестве резервного источника кислорода.


Сверхзвуковая шрапнель

Поддержание барьера между глубоким вакуумом снаружи и пригодной для дыхания атмосферой внутри – большая проблема для конструкторов космических аппаратов. Наибольший риск возникает из-за столкновений с мелкими частицами, которые, несмотря на их размер, движутся так быстро, что способны пробить дыру в наружной оболочке космического корабля. В лучшем случае это приведет к небольшой утечке, которую можно исправить. В худшем – к взрывной декомпрессии: корпус аппарата лопнет, как воздушный шар, когда изнутри вырвется воздух.

Космически полет никогда не потерпит недобросовестности, некомпетентности и пренебрежения.

Джин Кранц, руководитель полетов в NASA (1967)

Некоторые из этих встречающихся на орбите вокруг Земли частиц являются естественными микрометеороидами (крошечными каменными обломками), но, что удивительно, большинство из них – искусственный космический мусор: от кусков отброшенных ступеней ракет и упавших инструментов до фрагментов отработавших спутников и даже замерзшей мочи. Двигаясь со скоростью почти 8 км/с, 5-граммовый болт заключает в себе такое же количество энергии, что и груз массой 200 кг, упавший с вершины 18-этажного здания.

На такой скорости даже частички краски могут ударять как сверхзвуковая шрапнель. И подобное случалось. В 1983 году крошечная частичка оставила сильную вмятину на лобовом стекле шаттла «Челленджер». А в 2007 году кусок космического мусора пробил 6-миллиметровое отверстие в одной из радиаторных панелей шаттла.

По оценкам Европейского космического агентства (ЕКА), существует примерно 900 000 единиц космического мусора более сантиметра в поперечнике и миллионы осколков меньшего размера. United States Space Surveillance Network («Сеть космического наблюдения США»), или SSN, в настоящее время отслеживает около 20 000 объектов на орбите вокруг Земли, лишь 2000 из которых являются действующими космическими аппаратами. Когда SSN обнаруживает объект, проходящий слишком близко к действующему космическому аппарату (обычно определяются столкновения с вероятностью, превышающей 1 к 10 000), она предупреждает диспетчеров, чтобы те помогли последнему уклониться. МКС должна делать это в среднем один раз в год.

SSN может отследить куски мусора размером не менее 10 см. Чтобы справиться с более мелкими фрагментами, от которых нельзя увернуться, на МКС установлены щиты Уиппла, названные в честь американского астронома Фреда Уиппла, предложившего эту идею. Они состоят из разнесенных экранирующих слоев, которые разбивают столкнувшийся с ними кусок космического мусора и распределяют его фрагменты по более обширной области. Изменение удара – превращение пули в выстрел дробью – облегчает корпусу станции его поглощение. Корпус МКС выполнен из алюминия, армированного слоями керамической ткани Nextel, похожей на кевлар (он используется в бронежилетах).


Скрытая угроза[9]

Куски мусора не единственная угроза, с которой сталкиваются космонавты. Существуют и другие, в том числе невидимые. И одна из них – радиация. Она чрезвычайно опасна в космосе, особенно при длительных полетах, и, пожалуй, это наиболее сложная проблема из тех, что препятствуют нашим планам отправлять людей-исследователей на другие планеты Солнечной системы.



Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос
Двенадцатый космонавт
Двенадцатый космонавт

Георгий Тимофеевич Береговой… Человек, знакомый миллионам людей и пользовавшийся большим и заслуженным авторитетом. Летчик-фронтовик, совершивший 186 боевых вылетов, награжденный многими орденами и медалями, Герой Советского Союза, «мастер штурмовых атак». Заслуженный летчик-испытатель СССР, давший путевку в небо многим десяткам крылатых машин, один из лучший испытателей Советского Союза периода 50-х – 60-х годов прошлого века, знаменитый «король штопора». Летчик-космонавт СССР, получивший звание дважды Герой Советского Союза за испытательный полет на космическом корабле «Союз-3» в октябре 1968 года, – за полет, который фактически открыл дорогу в космос целому поколению космических кораблей «Союз», «СоюзТ», «СоюзТМ», орбитальным станциям «Салют» и «Алмаз», орбитальному комплексу «Мир».  

Сергей Чебаненко

Публицистика / Астрономия и Космос / История