Поскольку «запятненное» Солнце будет посылать намного меньше голубых лучей, дневное небо станет значительно темнее. Но освещение земной поверхности понизится всего в 20 раз. Вспомнив, что полная Луна освещает Землю в 400 000 раз слабее Солнца (см. задачу 4.4 «Светло ли на Плутоне?»), мы увидим, что «запятненное» Солнце будет светить в 20 000 раз ярче Луны, а это не хуже, чем само Солнце освещает землю в облачный осенний день.
7.9. Черный-черный…
Ответ: в — а — б. Черное тело испускает все, что получило извне. Черный ящик (понятие из кибернетики) выдает хотя бы что-то на выходе. Классическая черная дыра не испускает ничего. Квантовая может, но очень мало.
7.10. Почти со скоростью света
Если звездолет летит со скоростью, близкой к скорости света, то эффект Доплера и эффект аберрации света будут хорошо заметны «на глаз». Первый приведет к тому, что звезды по курсу корабля поголубеют и станут ярче, а за кормой — покраснеют и ослабнут. Второй эффект сдвинет все звезды вперед по курсу. Поэтому в направлении полета на небе будет много ярких голубых звезд, а за кормой — несколько слабеньких красных.
7.11. Солнечный ветер — 1
Давление солнечного ветра равно удвоенному (из-за отражения) потоку импульса летящих протонов:
А давление света — удвоенному потоку импульса квантов:
То есть давление света в тысячу раз сильнее, чем давление ветра на ту же площадь отражателя.
7.12. Солнечный ветер — 2
Будем считать солнечный ветер сферически симметричным с такими же параметрами, как у орбиты Земли (хотя это не совсем так). Тогда удельный поток массы солнечного ветра составит
Для солнечного ветра эквивалентный удельный поток массы составляет
То есть в форме излучения Солнце теряет вдвое больше массы, чем в форме корпускулярного потока.
Сложив оба потока (2,4 · 10–14
кг м–2 с–1) и умножив на площадь сферы радиусом 1 а. е., 4π (150 млн км)2 = 2,8 · 1023 м2, получим полный темп потери массы Солнцем: 6,7 · 109 кг/с или 2 · 1017 кг/год. Учитывая полную массу Солнца (2 · 1030 кг), видим, что относительная потеря массы в нашу эпоху составляет 10–13/год.7.13. Гиганты и карлики
Карлики горяче́е, поскольку для получения одинаковой степени ионизации и возбуждения элементов (которыми и определяется вид спектра) при более высокой плотности необходима более высокая температура. Высокая плотность в атмосфере карликов связана с их большей силой тяжести, дающей меньшую шкалу высот, при которой заметная оптическая толща набирается уже в более плотных областях. В протяженной атмосфере гигантов та же толща набирается еще в очень разреженных, верхних областях атмосферы.
7.14. Нуклеосинтез
По мере выгорания легких элементов в ядре звезды температура и плотность растут со временем, что позволяет формироваться все более сильно связанным ядрам тяжелых элементов. А в ранней Вселенной в результате быстрого расширения температура и плотность уменьшались. Когда температура снизилась настолько, что синтез легких элементов еще мог протекать и при этом ядра дейтерия и гелия уже не разрушались, для синтеза более тяжелых элементов температура и плотность стали уже малы. Произошла так называемая «закалка» — химический состав вещества стабилизировался.
7.15. Синтез гелия
В недрах звезд нет свободных нейтронов, поскольку время их жизни порядка 10 минут. Поэтому в синтезе гелия необходима реакция превращения протона в нейтрон, самая медленная в цепи термоядерных реакций. В ранней Вселенной в первые минуты расширения нейтронов было почти столько же, сколько и протонов, поэтому реакция их объединения в дейтерий и далее в гелий шла очень быстро. Через 5 минут температура и плотность снизились, и реакция прекратилась.
8. Звездные системы
8.1. Скопление одинаковых звезд
Вспомним, что при увеличении потока света в 100 раз блеск небесного объекта, по определению, сокращается на 5 звездных величин. Математически это можно выразить так: группа из
lg 100 = lg 102
= 2 lg 10 = 2 · 1 = 2,поэтому 2,5 lg 100 = 5. Заметьте, что 2,5 — это не сокращенное основание шкалы звездных величин 2,512…, а именно и ровно 2,5.
Теперь наша задача решается легко: полный блеск скопления равен
8.2. Скопление разных звезд
Сначала решим задачку попроще: есть две звезды с блеском