Читаем Вселенная в зеркале заднего вида полностью

Роман Эдвина Эбботта «Флатландия» — повествование о двумерном мире, которое дает представление о том, как можно нам, жителям трехмерного мира, представлять себе четырехмерный. Рассказчик — квадрат. Да-да, квадрат. Роман о его цивилизации и о физике. Еще там есть немного замечаний о политике. Заверяю вас, это куда интереснее, чем кажется по моему описанию.

Главная проблема подобного мира, прямо скажем, сложна. Приведу обидный и малоприличный пример: представьте себе, что вы двумерная амеба. У вас есть отверстие наподобие рта, которое принимает пищу. Как работает ваша пищеварительная система? Ну, стоит предположить, что сквозь вас проходит трубочка с отверстием на другом конце. Беда в том, что в двумерном мире такая трубочка расколет вас пополам. Иначе говоря, чтобы у вас работала пищеварительная система, надо, чтобы рот выполнял двойную функцию и служил и задом тоже…

Даже если не думать ни о чем неприличном, в двумерном мире, не говоря уже об одномерном, есть одна фундаментальная сложность. Системы и организмы в таком мире попросту не могут обладать достаточной сложностью, чтобы развить у себя хотя бы подобие разума.

Представить себе двумерные вселенные просто, поскольку их можно нарисовать на бумаге или на экране компьютера. Куда труднее нарисовать мысленную картину того, какова была бы жизнь во вселенной, где измерений больше трех. Однако нам придется по крайней мере задуматься над такой вероятностью. Если М-теория верна и измерений и правда десять, почему среди них так много компактных и всего три больших?

Можно долго распространяться о том, как устроена физика во вселенной, где больше трех измерений. Мы обсудили, как меняется способность впитывать свет у сферы Дайсона с увеличением радиуса, и пришли к выводу, что интенсивность света падает обратно пропорционально квадрату расстояния. Закон обратных квадратов — не случайность. Он прямо следует из того обстоятельства, что мы живем в трехмерной вселенной.

То, что обратные квадраты постоянно появляются в самых разных физических формулах, описывающих нашу вселенную, объясняется той же самой причиной. Интенсивность гравитационного взаимодействия убывает пропорционально квадрату расстояния между двумя звездами. Интенсивность электромагнитного взаимодействия убывает пропорционально квадрату расстояния между двумя протонами. И т. д.

При увеличении количества измерений все причудливо искажается. Например, живи мы в четырехмерной вселенной — имели бы закон обратных кубов. А в пятимерной — закон обратной четвертой степени и т. д.

Казалось бы, разница невелика — пока не поймешь, что во вселенных более высоких измерений (со своими законами обратных кубов, четвертых степеней и т. д.) невозможны стабильные орбиты. Иначе говоря, в четырехмерной вселенной Земля либо устремилась бы по спирали к Солнцу, либо улетела бы прочь. Так что нам не выпала бы редкостная удача — примерно пять миллиардов лет нежиться на более или менее постоянном солнышке: такое, оказывается, возможно только в трех измерениях.

Это справедливо для всех тел, вращающихся по орбите, в том числе для планет, комет, звезд в галактике и т. д., однако есть и еще одно важное свойство нашей вселенной, определяемое количеством измерений, которое допускает зарождение в ней жизни. Поскольку электромагнетизм в нашей вселенной также подчиняется закону обратных квадратов, при большем количестве измерений атомы также не были бы стабильны и спонтанно схлопнулись бы. А представить себе сложную жизнь совсем без атомов, прямо скажем, затруднительно — и еще труднее представить себе подобный разговор в отсутствие жизни.

Возможно, кому-то из читающих эти строки пришло в голову, что электроны, в сущности, не вращаются по орбитам вокруг атомов, то есть вращаются, но не совсем так, как планеты вокруг звезд. Да, конечно, но если продраться сквозь уравнения квантовой механики и корректно решить задачу, столкнешься с той же трудностью. Никаких стабильных атомов. Извините.

Итак, в пространстве мы ограничены тремя измерениями — но, может быть, во времени у нас их больше одного?

Макс Тегмарк, тот самый физик из Массачусетского технологического института, который снабдил нас классификацией множественных вселенных, очень интересно пишет о том, какова могла бы быть жизнь в подобных вселенных:

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги