Если предположить, что плотность газопылевого кокона, окутывающего Протосолнце, была везде постоянной, и принять как факт, что световое давление вытолкнуло легкие газы из внутренних областей Солнечной системы, то становится понятно, почему ближайшая к Солнцу газовая планета является крупнейшей: ей досталось дополнительное газовое вещество из ближайших окрестностей Протосолнца, выметенное световым давлением. На самом деле первоначальная плотность кокона, конечно, увеличивалась по направлению к центру гравитационного сжатия, что еще сильнее усугубляет картину. Право слово, если бы Юпитер не был крупнейшей планетой в Солнечной системе, этому следовало бы удивиться.
«Процесс производства» из газово-пылевой среды не слишком массивных звезд, подобных Солнцу, не очень расточителен — значительная часть сжимающегося облака диффузной среды превращается в звезду, и лишь небольшой процент общей массы идет на формирование планетной системы или постепенно рассеивается в окружающем молодую звезду пространстве. Если бы газово-пылевое облако, породившее Солнце, было значительно массивнее, то на долю «постороннего», не вошедшего в звезду вещества пришлась бы гораздо большая часть. Можно ожидать, что в таком случае были бы массивнее и газовые планеты — некоторые из них могли бы стать коричневыми карликами или даже нормальными карликовыми звездами.
Однако с Юпитером этого не произошло. Коричневыми карликами принято считать звезды в диапазоне масс от 0,013 Д°
0,075 масс Солнца, а Юпитер с его массой в одну тысячную солнечной серьезно не дотягивает до статуса даже такой неполноценной звезды, как коричневый карлик. Юпитер — планета. Правда, он излучает вдвое больше того, что получает от Солнца,
71
но это легко объясняется крайне медленным сжатием Юпитера. Никакие ядерные реакции в его недрах не идут — слишком мала температура.
Юпитер вращается быстрее всех газовых планет, делая оборот вокруг оси всего лишь за 9 ч 50,5 мин на экваторе и на 5 мин медленнее в высокоширотных зонах. Зональное вращение характерно как для звезд, так и для газовых планет. Из-за быстрого вращения диск Юпитера сплюснут (1:15), что легко замечает наблюдатель в самый скромный телескоп.
Также при беглом взгляде на диск Юпитера бросается в глаза его широтная полосатость. (По количеству видимых полос удобно тестировать оптику и пригодность атмосферы для наблюдений.) Видимая поверхность Юпитера есть не что иное, как облачный покров, разделенный на зоны быстрым вращением планеты. Бывает, что относительная скорость двух наблюдаемых деталей, находящихся в соседних зонах, доходит до 300 км/ч. При таких обстоятельствах края зон находятся в турбулентном движении, что выглядит как фестоны на краях полос*
Естественно, наиболее распространенное вещество в Юпитере — водород. Его там 82%, гелия —17%, а оставшийся процент приходится на долю других элементов. В атмосфере Юпитера присутствуют метан, этан, аммиак, кристаллики водяного льда, бисульфида аммония и т. д. Внешние слои планеты — чисто газовые, однако на глубине в 0,15 радиуса планеты водород приобретает металлические свойства и становится жидким. Его температура при этом достигает 2000 °С. Далее, на глубине 0,9 радиуса планеты водород переходит в твердое состояние с плотностью 11 г/см3, температурой 20 ооо К и давлением в 50 Мбар.
Разумеется, пока еще никто не нырял в Юпитер с термометром и барометром — мы привели расчетные данные. Возможно их дальнейшее уточнение, но качественно картина, по-видимому, не изменится.
Протяженная атмосфера большой и быстро вращающейся планеты просто обязана быть бурной. Так оно и есть на са
72
мом деле. Ураганные, по земным понятиям, ветры со скоростью 150 м/с — нормальное явление для Юпитера. Часто на диске планеты видны округлые образования, отличающиеся цветом от окружающих областей, причем сразу несколько, — это гигантские атмосферные вихри, напоминающие наши ураганы, только в большем масштабе. Обычно они существуют от нескольких недель до нескольких месяцев, но бывают и вихри, живущие десятки лет. Они возникают, исчезают, сливаются друг с другом, т. е. в первом приближении ведут себя подобно земным атмосферным вихрям, конечно, с поправкой на масштаб. Так, например, весной 1998 года два вихря поперечником в ю тыс. км каждый, известные как Белые Овалы и существовавшие порознь более бо лет, слились в один вихрь.
Есть на Юпитере и один супервихрь, наблюдаемый уже более 300 лет. Это знаменитое Красное Пятно размером 48 х 12 тыс. км. Любопытно, что в последние десятилетия Красное Пятно заметно поблекло и уже не так ярко выделяется на диске планеты. Может быть, оно исчезнет совсем, а может быть, вновь «соберется с силами» — будущее покажет.
На Юпитере открыта область, хорошо отражающая радиоволны и не совпадающая с Красным Пятном. Пока неизвестно, что это такое.