Каждый карбюратор в выборке из 10 штук испытывается с помощью обоих методов. Правило: вычисляйте среднее А и Б по 10 карбюраторам для обоих методов в каждой партии. Если А меньше Б в трех последовательных партиях, то отрегулируйте испытание А, с тем чтобы оно соответствовало испытанию Б, и продолжайте проверку. Аналогичный алгоритм действий, если в трех последовательных партиях А больше Б.
Чем плохо это правило? Предположим, что испытание А дает результаты, распределение которых то выше, то ниже результатов испытания Б. Тогда одна четвертая в длинной серии последовательных испытаний из трех партий будет давать А Б и одна четвертая показала бы А Б. Сформулированное таким образом правило ведет к вопиющей зарегулированности, платой за которую будут дополнительные затраты, вызванные искусственным ростом расхождения между двумя видами испытаний. Хуже того, это правило не дает возможности привести процесс испытаний в статистически управляемое состояние, так же как не позволит привести в состояние статистического управления разницу между двумя испытаниями.
Более подходящий способ сравнить два метода испытаний, при условии, что они дают реальные результаты измерений (сантиметры, миллиграммы и т. д.), – нанести результаты этих двух испытаний на график в соответствии с теми, что предложены на рис. 50
(глава 15).Статистическая управляемость инструментов и калибров
. Как мы узнали из главы 8, записанное измерение – это конечный продукт длинной серии операций от получения исходного сырья до самой записи, включая операцию измерения на одной из стадий процесса. Как подчеркивалось множество раз в этой книге, статистическая управляемость процесса измерений жизненно важна; в противном случае измерения бессмысленны.Покажет ли этот инструмент через неделю такие же результаты, как для сегодняшних 100 изделий? Что, если мы заменим операторов? Этот вопрос появляется в главе 8 о контроле и вновь возникает в главе 15 в связи с затратами на инспекцию. Читатель может получить совет из книги Гарри Кью и великолепной книги Western Electric Company (части B, стр. 84ff), обе ссылки приведены в конце данной главы. Стандарт 177 A. S. T M., относящийся к точности и систематическим ошибкам измерений, также будет полезен читателям (American Society for Testing and Materials – Американское общество по испытаниям и материалам).
Другая важная проблема использования инструментов – создать условия для хорошей работы. Пример (предоставленный моим другом д-ром Ллойдом Нельсоном) – образец жидкости, транспортируемый в лабораторию для измерения вязкости. По дороге он «стареет». Если бы измерительный инструмент можно было разместить там, где находится источник жидкости, результаты лучше бы характеризовали анализируемый материал.
Ложные сигналы измерительных инструментов
. Неуправляемый измерительный прибор может дать сигнал о наличии особой причины, когда ее нет, или, наоборот, не обнаружить особую причину, когда она действительно существует. Недостаточно точный прибор даст ложный сигнал независимо от того, находится он в управляемом состоянии или нет. Теперь вы понимаете, насколько важно уделять внимание точности и статистической управляемости приборов. (Предложено Уильямом Шеркенбахом, Ford Motor Company.)Оператор делал только одно измерение расстояния между двумя вспышками. Я попросил его сделать восемь замеров. Он согласился. Размах между восемью значениями оказался в четыре раза больше поля допуска. (Пример Джеффри Люфтига.)