Читаем Выносливость. Разум, тело и удивительно гибкие пределы человеческих возможностей полностью

Однако общая картина такова: даже небольшие различия в потреблении кислорода влияют на производительность. Более позднее исследование ученых из Австралийского института спорта[230] подтвердило, что из-за высоты в Канберре снижается не только VO2max, но и спортивные результаты. И наоборот, как мы видели в главе 2, при вдыхании чистого кислорода повышается выносливость, даже в ситуациях (таких как пересечение вплавь Ла-Манша), где острая нехватка кислорода не становится проблемой. Вот почему ученый Яннис Пициладис, ответственный за один из проектов, которые направлены на то, чтобы опередить Nike в подготовке к двухчасовому марафону, в какой-то момент полетел в Израиль, чтобы разведать возможность проведения марафона рядом с Мертвым морем[231], недалеко от самой низкой точки. В этом месте высота на 400 м ниже уровня моря, и воздух там содержит примерно на 5% больше кислорода, чем на уровне моря, что дает потенциальную (хотя и гипотетическую) возможность достичь успеха. Кто же один из ключевых исследователей, доказавших влияние кислорода на повышение производительности? Некто Роджер Баннистер, опубликовавший статью «Влияние добавления кислорода к вдыхаемому воздуху на дыхание и производительность во время физических упражнений» в Journal of Physiology спустя чуть более двух месяцев после преодоления четырехминутного барьера (миля за четыре минуты) в 1954 году. Он обнаружил, что повышение содержания кислорода в воздухе со стандартных 21 до 66% позволило ему вдвое увеличить время до отказа в тесте на беговой дорожке с большим уклоном.

Одно интересное объяснение того, какую роль кислород играет в ограничении возможностей человека, связано с исследованиями «церебральной оксигенации»[232] — притока крови к мозгу, необходимого для обеспечения жизни. Когда вы начинаете тренировку, уровень кислорода в мозге изначально повышается, питая особо активные нейроны, «отдающие команды» мышцам и контролирующие усилия. Затем уровень кислорода выходит на устойчивое плато и держится там до тех пор, пока вы не приблизитесь к своим пределам. Когда вы дышите все интенсивнее, уровень углекислого газа в крови падает, что, в свою очередь, заставляет кровеносные сосуды, ведущие к вашему мозгу, сжиматься (то же происходит, когда вы намеренно дышите слишком глубоко, что приводит к головокружению, и в итоге вы теряете сознание). Возникающая в результате нехватка кислорода в мозге может непосредственно сказаться на работе мышц или способствовать ощущению усталости, сигнализируя о необходимости замедлиться или остановиться.

В 2010 году исследователи из канадского Университета Летбриджа показали, что количество кислорода в мозге у подготовленных бегунов из студенческих команд действительно падает в конце пятикилометрового забега. Затем, четыре года спустя, другая исследовательская группа (куда входил один из авторов предыдущего исследования) провела аналогичное исследование, в котором принимали участие пятнадцать профессиональных кенийских бегунов. Это были спортсмены мирового класса, пробегавшие полумарафон в среднем за 62 минуты. Во время забега на дистанции 5 км уровень кислорода в их мозге оставался примерно постоянным вплоть до конца дистанции. Трудно сделать окончательные выводы из двух небольших исследований, однако ученые предположили, что организм у кенийцев способен лучше снабжать мозг кислородом и поддерживать его необходимый уровень. Это происходит благодаря тому, что они родились на высоте, в детстве вели очень активный образ жизни и в их мозге образовалось больше кровеносных сосудов. Эти сосуды имеют более толстые стенки, поэтому и сжать их труднее.

Гениальное исследование Гийома Милле[233], чьи работы по мышечной усталости мы обсуждали в предыдущей главе, дает дополнительные доказательства того, что выносливость зависит (по крайней мере, частично) от уровня кислорода в мозге. Милле заставлял участников своих исследований многократно сгибать руки до изнеможения на различных имитируемых высотах от нуля и до чуть более 7000 м над уровнем моря, при этом блокируя приток крови к руке и ее отток с помощью тугой манжеты для измерения давления. Это означало, что при любой высоте мышцы рук получали одинаковое количество кислорода (нисколько), доходя до одинаковой степени мышечной усталости и накопления метаболитов. Однако время до отказа сокращалось на 10–15% на самой большой высоте. По мнению Милле, это было следствием более низкой оксигенации мозга.

Перейти на страницу:

Все книги серии МИФ. Здоровый образ жизни

Похожие книги

100 секретов счастливой любви
100 секретов счастливой любви

Кто из нас не мечтает о счастливой любви? Но как найти свое счастье и, самое главное, – удержать его? Как не допустить крушения иллюзий и сохранить в душе романтику?Любовные отношения имеют свои законы и правила. Узнав их, вы сможете достичь тончайших оттенков любовных переживаний и избежать разочарований и обид.Рекомендации автора помогут вам понять, чем отличается настоящая любовь от других чувств, обычно за нее принимаемых, на какие отношения претендует ваш избранник, и на что можете рассчитывать вы, как вести себя, чтобы добиться поставленной цели и избежать распространенных ошибок. Умение строить гармоничные отношения с любимыми и близкими – это искусство, которым может овладеть каждый.

Константин Петрович Шереметьев , Константин Шереметьев

Психология и психотерапия / Психология / Образование и наука