Читаем Занимательная арифметика [Загадки и диковинки в мире чисел] полностью

Курсивные цифры (при письме можно их подчеркивать) выписывают справа налево и сразу получают искомое изображение числа в иной системе.

Приведем еще примеры.



Числовая система ацтеков Мексики была двадцатеричной. Количества до 20 они изображали числом точек или пальцев; для 20 рисовался флаг; число 400 (20 х 20) имело значок, похожий на ель, который значил — "многочисленный, как волосы". Для самой большой единицы счета — 8000 (20 х 20 х 20) — изображался мешок: он символизировал огромное количество бобов какао в мешке. Чтобы изобразить некоторое количество предметов, ацтеки прямо пририсовывали к изображению этого предмета нужные числовые значки: таким образом, А означает 9 масок из драгоценного камня; Б — 100 мешков какао; В — 402 бумажных одеяла указанного рисунка; Г — 8000 связок листьев копаловой камеди.


Пример 1.

Изобразить 47 в троичной системе:

Решение:



Ответ: "1202". Проверка: 1 х 27 + 2 х 9 + 0 х 3 + 2 = 47.


Пример 2.

Число 200 изобразить в семеричной системе.

Решение:



Ответ: "404". Проверка: 4 х 49 + 0 х 7 + 4 = 200.


Пример 3.

Число 163 изобразить в двенадцатеричной системе.

Решение:



Ответ: "117". Проверка: 1 х 144 + 1 х 12 + 7 = 163


Теперь читатель не затруднится изобразить любое число в какой угодно системе счисления. Единственная помеха может возникнуть лишь вследствие того, что в некоторых случаях не будет доставать обозначений для цифр. В самом деле: при изображении числа в системах с основанием более десяти (например, двенадцатеричной), может явиться надобность в цифрах "десять" и "одиннадцать". Из этого затруднения нетрудно выйти, избрав для новых цифр какие-нибудь условные знаки или буквы — хотя бы, например, буквы К и Л.

Так, число 1579 в двенадцатеричной системе изобразится следующим образом:



Ответ: "(10)(11)7", или KЛ7. Проверка: 10 х 144 + 11 х 12 + 7 = 1579.

Выразите:

1) Число 1926 в двенадцатеричной системе.

2) Число 273 в двадцатеричной системе.


ПРОСТЕЙШАЯ СИСТЕМА СЧИСЛЕНИЯ


Нетрудно сообразить, что в каждой системе высшая цифра, какая может понадобиться, равна основанию этой системы без единицы. Например, в десятичной системе высшая цифра 9, в шестеричной — 5, в троичной — 2, в пятнадцатеричной — 14 и т. д.



Клинописные цифры вавилонской шестидесятеричной системы. Для записи целых чисел вавилоняне пользовались всего двумя знаками — 1 и 10; 60 изображалось знаком единицы, но с большим интервалом от следующих цифр.


Самая простая система счисления, конечно, та, для которой требуется меньше всего цифр. В десятичной системе нужны десять цифр (считая и 0), в пятеричной— пять цифр, в троичной — три цифры (1, 2 и 0), в двоичной— только две цифры (1 и 0).

Существует ли и "единичная" система? Конечно, — это система, в которой единицы высшего разряда в один раз больше единицы низшего, то-есть равны ей; другими словами, "единичной" можно назвать такую систему, в которой единицы всех разрядов имеют одинаковое значение. Это самая примитивная "система"; ею пользовался первобытный человек, делая на дереве зарубки по числу сосчитываемых предметов. Но между нею и всеми другими системами счета есть громадная разница: она лишена главного преимущества нашей нумерации — так называемого поместного значения цифр. Действительно: в "единичной" системе знак, стоящий на третьем или пятом месте, имеет то же значение, что и стоящий на первом месте. Между тем даже в двоичной системе единица на третьем месте (справа) уже в 4 раза (2 х 2) больше, чем на первом, а на пятом — в 16 раз больше (2 х 2 х 2 х 2). Для изображения какого-нибудь числа по "единичной" системе нужно ровно столько же знаков, сколько было сосчитано предметов: чтобы записать сто предметов, нужно сто знаков, в двоичной же — только семь ("1100100"), а в пятеричной — всего три ("400").

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука