Читаем Занимательная арифметика [Загадки и диковинки в мире чисел] полностью

Архимед вычислил некогда, сколько песчинок заключал бы в себе мир, если бы весь он, до неподвижных звезд, наполнен был тончайшим песком. У него получился результат, не превышающий единицы с 63 нолями. Наше число состоит не из 64, а почти из 370 миллионов цифр — следовательно, оно неизмеримо превышает огромное число Архимеда.

Поступим же по примеру Архимеда, но вместо "исчисления песчинок" произведем "исчисление электронов". Вы уже знаете, что электрон меньше песчинки примерно во столько же раз, во сколько раз песчинка меньше земного шара. Для радиуса видимой вселенной примем расстояние в миллиард световых лет[54]. Так как свет пробегает в секунду 300000 км, а в году 31 миллион секунд, то можно считать, что световой год равен круглым счетом 10 биллионам километров (гнаться за большей точностью здесь бесполезно). Значит, для радиуса всей известной нам вселенной получаем величину 10 миллиардов биллионов километров, или, прибегая к способу изображения числовых великанов, объясненному раньше, 1022 км.

Объем шара такого радиуса можно вычислить по правилам геометрии: он равен (с округлением) 44∙1066 куб. км. Умножив это число на число кубических сантиметров в кубическом километре (1015), получим для объема[55] видимой вселенной величину 1081 куб. см.

Теперь представим себе, что весь этот объем сплошь заполнен самыми тяжелыми из известных нам атомов — атомами элемента урана, которых идет на грамм около 1022 штук. Их поместилось бы в шаре указанного объема 10103 штуки. Дознано, что в каждом атоме урана содержится 238 электронов (внешних и внутренних). Поэтому во всей доступной нашему исследованию вселенной могло бы поместиться не более 10106 электронов.

Число, состоящее "всего лишь" из 107 цифр… Как это мизерно по сравнению с нашим числовым великаном почти из 370 миллионов цифр!

Вы видите, что, наполняя сплошь видимую вселенную электронами, мы не исчерпали и небольшой доли того исполинского числа, которое скромно скрывается под изображением:

Познакомившись с этим замаскированным гигантом, обратимся к его противоположности.

Соответствующий числовой лилипут получится, если разделим единицу на это число. Будем иметь:



что равно:

1/9387420489

Мы имеем здесь знакомое нам огромное число в знаменателе. Сверхвеликан превратился в сверхлилипута.

Необходимо сделать существенное замечание о великане из трех девяток. Я получил немало писем от читателей с утверждением, что выражение это вовсе не так трудно вычислить; ряд читателей даже выполнили требуемый расчет, употребив на него сравнительно немного времени. Результат оказался несравненно скромнее того, о котором у меня рассказано. В самом деле, пишут они,

99 = 387 420 489;

возвысив же 387 420 489 в 9-ю степень, получаем число "всего лишь" из 72 цифр. Это хотя и не мало, но до 370 миллионов цифр от него еще очень далеко…

Читатели недоумевают, а между тем ошибка их в том, что ими неправильно понят смысл трехъярусного выражения из девяток. Они понимают его так:



в то время как правильное его понимание иное:



Отсюда огромная разница в итогах вычисления.

Оба способа понимания приводят к одинаковому результату только в одном случае: когда мы имеем выражение



Тут безразлично, как вести вычисление: в обоих случаях получается один результат—16.

Любопытно, что сейчас приведенное выражение вовсе не означает самого большого числа, какое можно изобразить тремя двойками. Можно получить гораздо большее число, если расположить двойки так:

222

Это выражение равно 4 194 304, то-есть значительно больше 16.

Как видите, третья сверхстепень не во всех случаях выражает наибольшее число, какое можно изобразить тремя одинаковыми цифрами.

Глава 11

АРИФМЕТИЧЕСКИЕ ПУТЕШЕСТВИЯ



ВАШЕ КРУГОСВЕТНОЕ ПУТЕШЕСТВИЕ


В молодости я занимался в редакции одного распространенного ленинградского журнала, где состоял секретарем. Однажды мне подали визитную карточку посетителя. Я прочел на ней незнакомое имя и весьма необычное обозначение профессии: "первый русский кругосветный путешественник пешком". По обязанности службы мне не раз доводилось беседовать с путешественниками по всем частям света и даже с кругосветными, но о "кругосветном путешественнике пешком" я еще не слыхал. С любопытством поспешил я в приемную, чтобы познакомиться с этим предприимчивым и неутомимым человеком.

Замечательный путешественник был молод и имел очень скромный вид. На вопрос, когда успел он совершить свое необыкновенное путешествие, "первый русский кругосветный и т. д." объяснил мне, что теперь оно именно и совершается. Маршрут? Шувалово — Ленинград[56]; о дальнейшем он желает посоветоваться со мной… Из разговора выяснилось, что планы "первого русского и т. д." довольно смутны, но, во всяком случае, не предусматривают оставления пределов России.

— Как же в таком случае совершите вы кругосветное путешествие? — с изумлением спросил я.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука