Читаем Занимательная электроника полностью

Внешний вид используемого в ней индикатора типа PMLCD фирмы Velleman показан на рис. 13.5 вверху. Он представляет собой фактически готовый вольтметр с диапазоном входного напряжения в пределах ±199,9 мВ (знак минус высвечивается автоматически). Соответственно входному диапазону, индикатор имеет четыре десятичных цифры, которые могут показывать число до 1999, причем положение запятой выбирается перестановкой джампера на самом индикаторе. Чтобы индикатор показывал именно градусы температуры, нам придется подогнать шкалу выходных напряжений так, чтобы диапазону в 50° соответствовала величина 50 мВ на выходе ОУ (тогда, при соответствующей установке джампера на головке, показания будут высвечиваться с десятыми, как на рисунке). То есть, фактически нам придется ослабить напряжение с датчика более чем в два раза, при этом использовать ОУ окажется нецелесообразно — усиливать нечего.

Сам индикатор питается от нестабилизированного напряжения 7-11 В прямо с батарейки, ток потребления — около 1 мА. Отказаться от стабилизатора для измерительной части здесь нельзя — напряжение на р-n-переходе сильно зависит от тока. Общее потребление схемы здесь будет примерно вдвое выше, чем у стрелочного термометра.

Напряжение с датчика подается на делитель R2-R3, которым ослабляется в нужное количество раз, и подается на вход (+Vin) индикатора (разводка выводов индикатора на рис. 13.5 не приводится, т. к. все указано на его корпусе). Другой способ установки нужного наклона характеристики — изменение делителя в самой схеме индикатора (согласно примерам, приведенным в техническом описании индикатора), тогда от делителя R2-R3 можно избавиться. Ноль показаний (соответствующий нулю температуры) устанавливается с помощью делителя R4-R5. Таким образом, процедура калибровки здесь аналогична описанной ранее: вы устанавливаете на индикаторе ноль (подбирая резистор R5) и некоторое значение температуры (меняя резистор R3 или соотношение делителя индикатора), попеременно погружая датчик в воду с разной температурой.

Учтите, что сам индикатор имеет погрешность измерения напряжения порядка 0,5 %, так что отражение десятых долей градуса тут есть, в общем, чистая бутафория. Погрешность превысила бы градус, если бы не наша процедура калибровки, которая позволяет избавиться от систематической составляющей и снижает погрешность раза в два-три. Если же уменьшить входное напряжение еще в десять раз, избавившись от десятых, то часть погрешности, обусловленная индикатором, пропорционально возрастет — 0,5 % отчитывается от полной шкалы входных напряжений (200 мВ), и термометр начнет показывать ошибку уже в единицах градусов. Но в подобных конструкциях от погрешности не избавишься — надо делать все по-иному, чем мы и займемся в главе 17.

В заключение остановимся еще на одной проблеме, которая имеет решающее значение для корректных измерений температуры воздуха (для воды все несколько проще). Напомним основополагающий физический принцип, согласно которому температуру воздуха можно измерять только в тени — «температура воздуха на солнце» не имеет никакого физического смысла, о чем часто забывают даже телевизионные ведущие. Это обусловлено тем, что воздух прозрачен и лучами солнца не прогревается, зато термометр и окружающие его поверхности на солнце прогреваются очень даже, и степень этого прогрева зависит от материала, который освещается солнечными лучами. Заверните при 20-градусном морозе термометр в черную ткань при полном безветрии, и вы получите «температуру воздуха на солнце» градусов в двадцать-тридцать тепла, что к действительности не имеет никакого отношения.

Поэтому место расположения датчика надо выбирать очень тщательно — он не только не должен сам подвергаться воздействию прямых солнечных лучей, но и не должен располагаться вблизи поверхностей, которые такому воздействию подвергаются (особенно под ними — скажем, в случае расположения под козырьком, но на освещенной стене дома, козырек только усугубит ситуацию из-за того, что под ним будет скапливаться поднимающийся теплый воздух). Практически выбрать место установки датчика бывает очень непросто, и именно поэтому уличные термометры-табло часто врут.


Немного о метрологии и ошибках аналоговых схем


Доступность цифровых измерений в современных реалиях породила явление массовой безграмотности в отношении таких сущностей, как ошибки измерений. В самом деле, уже не раз упоминавшаяся платформа Arduino (см. главы 21 и 22) для проведения аналоговых измерений фактически требует всего лишь одной строчки программного кода — вызова функции anaiogRead (). Это порождает мнимую уверенность в том, что все произойдет само по себе, и никаких знаний об погрешностях тут не требуется. Разумеется, это далеко не так, и данный раздел — лишь краткое введение в тему погрешностей электронных схем, изучение которой мы будем продолжать на протяжении всей книги.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки