Читаем Занимательная электроника полностью

Необходимость элементарных знаний в области метрологии для радиолюбителя можно пояснить на примере инструкции к мультиметру: пусть там записано, что погрешность измерения напряжения составляет 0,5 % на пределе 2 вольта. Если вы сходу правильно ответите на вопрос, насколько в абсолютных единицах (вольтах или милливольтах) конкретная величина, показываемая прибором (например, «1,000 В») может отличаться от истинной, можете эту часть главы не читать (правильный ответ приведен в конце главы).

Другая типовая задача — построить градуировочную кривую и вычислить нужные коэффициенты пересчета для какого-либо датчика, чтобы прибор показывал физические величины, — также трудноосуществима без элементарных знаний в области метрологии. Кроме того, пытаться проектировать измеритель любой физической величины, не проведя хотя бы поверхностного анализа возникающих погрешностей, совершенно бессмысленно — даже при самых мягких требованиях к точности можно основательно «попасть», зря потратив и время, и деньги. Попытаемся очень кратко систематизировать сведения, которые необходимы для такого анализа.

Метрология — наука о том, как правильно проводить измерения. Все началось с того, что возникшая в середине прошлого тысячелетия рациональная наука поставила во главу угла принцип поверки теории экспериментом. Ясно, что это возможно осуществить только в том случае, если эксперимент воспроизводим, т. е. может быть повторен любым другим человеком (это положение еще называют принципом «верификации»). Основная же проблема воспроизводимости состоит в том, что ни один эксперимент не обходится без ошибок. Поэтому метрология занимает очень важное место в современном мире. Без нее технический прогресс был бы вообще невозможен, потому что никто бы тогда не смог ничего сказать о достоверности полученных в эксперименте данных.

Если мы представим себе экспериментальную систему наподобие объекта регулирования, изображенного на рис. 12.2, то кроме входов (входных воздействий), которые контролируются исследователем, на систему действует еще множество различных факторов, которые можно поделить на несколько различных групп. Так, есть незначимые факторы — те, которые нам известны, но для простоты мы их влиянием пренебрегаем, — такие, как отклонения в свойствах реальных физических тел от идеализации типа «абсолютно твердое тело» или «материальная точка» (типичный пример — влияние базового тока в транзисторе на величину эмиттерного, которое мы обычно не учитываем). Есть факторы вполне значимые, но мы не можем ими управлять и часто даже неспособны их контролировать, — скажем, разброс параметров электронных компонентов. Как бы все упростилось, если бы все транзисторы одного типа были бы совершенно одинаковыми! Наконец, во многих случаях могут быть и неизвестные нам факторы — содержание науки во многом состоит в том, чтобы такие факторы обнаруживать и влияние их исследовать.

Как же можно учитывать подобные воздействия? Тут на помощь приходит теория вероятностей — точнее, ее дочерняя прикладная дисциплина под названием математическая статистика. Основное ее предположение состоит в том, что все неучтенные факторы можно рассматривать, как равномерный шум, приводящий к чисто случайному разбросу значений измеряемой величины. Излишне говорить, что довольно часто это предположение не совсем соответствует действительности, но все же в большинстве практических случаев (по крайней мере, в технических приложениях) оно обеспечивает неплохое приближение к истине, и применение методов математической статистики дает на удивление хорошие результаты. Только не следует забывать, что статистика не может повысить точность измерения, если прибор этого не позволяет, — она всего лишь дает нам сведения о том, чего мы достигли в действительности.


Точность и разрешающая способность


Несколько слов о том, насколько вообще целесообразно стремиться к высокой абсолютной точности измерений. Измерительные схемы характеризуются тремя основными параметрами: точностью, разрешающей способностью и стабильностью (временным дрейфом). Что такое точность или обратная ей величина — погрешность, понятно интуитивно. Разрешающая же способность (иногда говорят о чувствительности) — это попросту минимальная разница в значениях измеряемого параметра, которую мы еще можем различить. Для аналоговых приборов (стрелочных, или, например, ртутных термометров) это половина самого мелкого деления шкалы, а для цифровых — единица самого младшего разряда. Естественно, повышать точность сверх разрешающей способности бессмысленно. А стабильность (дрейф) — самый сложный для оценки параметр, она характеризует уход показаний с течением времени. Подробнее на вопросах оценки дрейфа мы не будем здесь останавливаться.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки