Читаем Занимательная электроника полностью

Я вас могу удивить, но буду утверждать, что в большинстве практических случаев точное значение абсолютной величины — в определенных пределах, разумеется — не представляет особого интереса. При измерении температуры единственное исключение для бытовых приборов — точка замерзания воды, о чем мы говорили ранее. Но в других случаях обычно нам неважно, 9 градусов на улице или 11, главное — весна, и можно снимать шубу.

С другой стороны, обычно нет никакого смысла конструировать суперстабильные и высокоразрешающие, но неточные, приборы — просто потому, что обеспечение стабильности и точности во многом взаимосвязаны, причем первое еще и существенно сложнее. А если мы очень сильно увеличим разрешающую способность по сравнению с точностью, то рискуем попасть в ситуацию, когда десятые градуса просто будут мельтешить на дисплее, что еще хуже, чем если бы их не было вовсе. Но не забывайте, что абсолютная точность, кроме всего прочего, зависит от тщательности градуировки и используемого эталона, а разрешающая способность и стабильность — только от компонентов и конструкции.

* * *

Заметки на полях

Точность и погрешность — величины взаимодополняющие, что совершенно ясно по смыслу терминов. Поэтому, вообще говоря, произнести что-то вроде «точность в пределах 1 %» — некорректно, естественно, тут идет речь о погрешности, а точность в данном случае выражалась бы числом 99 %. Тем не менее, в повествовательной речи такое допустимо, и мы сами не раз прибегали к подобным оборотам — просто потому, что совершенно ясно, о чем идет речь, и запутаться невозможно. А вот в англоязычных странах почему-то вместо погрешности принят термин именно «accuracy», что даже без обращения к словарю легко перевести, как точность (вместо отвечающего по смыслу «inaccuracy»). Этот нюанс следует иметь в виду при чтении литературы на английском языке.


Систематические ошибки


Ошибки измерения делятся на случайные (тот самый шум, о котором шла речь ранее) и систематические. Прояснить, что такое систематическая ошибка, можно на следующем примере: предположим, мы немного изменим в схеме, собранной по рис. 13.4, сопротивление резистора R2. При этом у нас на определенную величину сдвинется вся шкала измерений: показания термометра будут соответствовать действительности, только если мы прибавим (или вычтем, неважно) некоторую константу к полученной величине: t = t' + δ, где t — «правильное» значение температуры (оно все же отличается от истинного значения из-за наличия случайной ошибки); t' — показания термометра; δ — величина систематической ошибки из-за сдвига шкалы. Более сложный случай систематической погрешности — если мы оставим R2 в покое, а немного изменим R5, т. е. изменим наклон характеристики термометра, или, как еще это называют, крутизну преобразования. Это равносильно тому, что мы умножаем показания на некий постоянный множитель k, и «правильное» значение будет тогда определяться по формуле: t = к·t'. Эти виды ошибок носят название аддитивной и мультипликативной погрешностей.

О систематических погрешностях математическая статистика «ничего не знает», она работает только с погрешностями случайными. Единственный способ избавиться от систематических погрешностей (кроме, конечно, подбора прецизионных компонентов) — это процедуры калибровки (градуировки), о них мы уже говорили в этой главе ранее.


Случайные ошибки измерения и их оценка


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки