Читаем Занимательная электроника полностью

Оценка среднего квадратического отклонения, соответственно, будет:


(4)

Здесь (xi — mх) — отклонения конкретных измерений от ранее вычисленного среднего.

Следует особо обратить внимание, что сумму квадратов отклонений делить нужно именно на n — 1, а не на n, как может показаться на первый взгляд, иначе оценка получится неверной. Второе, на что следует обратить внимание, — разброс относительно среднего характеризует именно среднее квадратическое отклонение, вычисленное по формулам (3) и (4), а не среднее арифметическое отклонение, как рекомендуют в некоторых школьных справочниках, — последнее дает заниженную и смещенную оценку (не напоминает ли вам это аналогию со средним арифметическим и действующим значениями переменного напряжения из главы 4?).

* * *

Заметки на полях

Кроме математического ожидания, средние значения распределения вероятностей характеризуют еще величинами, называемыми модой и медианой. В случае нормального распределения все три величины совпадают, но в других случаях они могут оказаться полезными: мода есть абсцисса наивероятнейшего значения (т. е. максимума на кривой распределения, что полностью отвечает бытовому понятию о моде), а медиана выборки есть такая точка, что половина выборки лежит левее ее, а вторая половина — правее.

* * *

Этими формулами для расчета случайных погрешностей можно было бы ограничиться, если бы не один важный вопрос: оценки-то мы получили, а вот в какой степени они отвечают действительности? Правильно сформулированный вопрос будет звучать так: какова вероятность того, что среднее арифметическое отклоняется от «истинного» значения (т. е. математического ожидания) не более чем на некоторою величину δ (например, на величину оценки среднего квадратического отклонения s)?

Величина δ носит название доверительного интервала, а соответствующая вероятность — доверительной вероятности (или надежности). Обычно решают задачу, противоположную сформулированной, — задаются величиной надежности и вычисляют доверительный интервал δ. В технике принято задаваться величиной надежности 95 %, в очень уж серьезных случаях — 99 %. Простейшее правило для обычных измерений в этом случае таково: при условии достаточно большого числа измерений (практически, более 15–20) доверительной вероятности в 95 % соответствует доверительный интервал в 2s, а доверительной вероятности в 99 % — доверительный интервал в 3s. Это известное правило трех сигм, согласно которому за пределы утроенного квадратического отклонения не выйдет ни один результат измерения, но на практике это слишком жесткое требование. Если мы не поленимся провести не менее полутора десятков отдельных измерений величины х, то с чистой совестью можем записать, что результат будет равен:

х m ± 2s.


Регрессия и метод наименьших квадратов


Все сказанное относилось к случаю, когда мы измеряем одну величину, имеющую некоторую случайную погрешность. Однако на практике нам часто требуется по экспериментальным данным получить оценку некоторой функции у(х) — фактически это задача построения кривой по результатам опытных данных, которую вам, несомненно, приходилось не раз решать, если вы обучались в техническом вузе.

Процесс проведения кривой через какие-либо точки (расчетные или экспериментальные) в общем случае называется аппроксимацией. Аппроксимацию следует отличать от интерполяции (когда по совокупности имеющихся значений функции и переменных рассчитывают значение функции в некоторой точке между ними) и экстраполяции (когда рассчитывают значения функции вне области, охваченной имеющимися значениями, в предположении, что там кривая ведет себя так же). Насчет последней операции следует отметить, что полиномы, полученные регрессионным способом (см. далее), за исключением разве что прямой линии, обычно для проведения экстраполяции не годятся — т. к. не несут в себе физического смысла и вне экспериментальной области могут очень сильно расходиться с реальной картиной.

Провести кривую, аппроксимирующую опытные данные, можно от руки на миллиметровке, но как решать такую задачу «правильно»? Причем, как и в предыдущем случае, желательно бы иметь возможность оценить погрешности измерений.

Принцип такого построения при наличии случайных ошибок измерения иллюстрирует рис. 13.7.



Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки