Я предполагаю, что читатель знаком с таким понятием, как вероятность. Если же нет — для знакомства настоятельно рекомендую книгу [12], которая есть переиздание труда от 1946 года. Расширить кругозор вам поможет и классический учебник [13], который отличает исключительная внятность изложения (автор его, известный математик Елена Сергеевна Вентцель, кроме научной и преподавательской деятельности, также писала художественную литературу под псевдонимом И. Грекова). Более приближен к инженерной практике другой учебник того же автора [14], а конкретные сведения о приложении методов математической статистики к задачам метрологии и обработки экспериментальных данных, в том числе с использованием компьютера, вы можете найти, например, в [15]. Мы же здесь остановимся на главном — расчете случайной погрешности.
В основе математической статистики лежит понятие о нормальном распределении. Не следует думать, что это нечто заумное — вся теория вероятностей и матстатистика, как прикладная дисциплина в особенности, основаны на здравом смысле в большей степени, чем какой-либо другой раздел математики.
Не составляет исключения и нормальный закон распределения, который наглядно можно пояснить так. Представьте себе, что вы ждете автобус на остановке. Предположим, что автопарк работает честно, и надпись на табличке «интервал 15 мин» соответствует действительности. Пусть также известно, что предыдущий автобус отправился от остановки ровно в 10:00. Вопрос — во сколько отправится следующий?
Как бы идеально ни работал автопарк, совершенно ясно, что ровно в 10:15 следующий автобус отправится вряд ли. Пусть даже автобус выехал из парка по графику, но наверняка тут же был вынужден его нарушить из-за аварии на перекрестке. Потом его задержал перебегающий дорогу школьник. Потом он простоял на остановке из-за старушки с огромной клетчатой сумкой, которая застряла в дверях. Означает ли это, что автобус всегда только опаздывает? Отнюдь, у водителя есть план по выручке, и он заинтересован в том, чтобы двигаться побыстрее, потому он может кое-где и опережать график, не гнушаясь иногда и нарушением правил движения. Поэтому событие, заключающееся в том, что автобус отправится в 10:15, имеет лишь определенную вероятность, не более.
Если поразмыслить, то станет ясно, что вероятность того, что следующий автобус отправится от остановки в определенный момент, зависит также от того, насколько точно мы определяем этот момент. Ясно, что вероятность отправления в промежутке от 10:10 до 10:20 гораздо выше, чем в промежутке от 10:14 до 10:16, а в промежутке от 10 до 11 часов оно, если не возникли какие-то совсем уж форс-мажорные обстоятельства, скорее всего, произойдет наверняка. Чем точнее мы определяем момент события, тем меньше вероятность того, что оно произойдет именно в этот момент, и в пределе вероятность того, что любое событие произойдет
Такое кажущееся противоречие (на которое, между прочим, обращал внимание еще великий отечественный математик Колмогоров) на практике разрешается стандартным для математики способом — мы принимаем за момент события некий малый интервал времени
Правильно сформулированный вопрос по поводу автобуса звучал бы так: каково распределение плотности вероятностей отправления автобуса во времени? Зная эту закономерность, мы можем всегда сказать, какова вероятность того, что автобус отправится в определенный промежуток времени.
Интуитивно форму кривой распределения плотности вероятностей определить несложно. Существует ли вероятность того, что конкретный автобус отправится, к примеру, позже 10:30 или, наоборот, даже раньше предыдущего автобуса? А почему нет — подобные ситуации в реальности представить себе очень легко. Однако ясно, что такая вероятность намного меньше, чем вероятность прихода «около 10:15». Чем дальше в обе стороны мы удаляемся от этого центрального наиболее вероятного срока, тем меньше плотность вероятности, пока она не станет практически равной нулю (то, что автобус задержится на сутки — событие невероятное, скорее всего, если такое случилось, вам уже будет не до автобусов). То есть распределение плотностей вероятностей должно иметь вид некоей колоколообразной кривой.