Читаем Занимательная электроника полностью

Я предполагаю, что читатель знаком с таким понятием, как вероятность. Если же нет — для знакомства настоятельно рекомендую книгу [12], которая есть переиздание труда от 1946 года. Расширить кругозор вам поможет и классический учебник [13], который отличает исключительная внятность изложения (автор его, известный математик Елена Сергеевна Вентцель, кроме научной и преподавательской деятельности, также писала художественную литературу под псевдонимом И. Грекова). Более приближен к инженерной практике другой учебник того же автора [14], а конкретные сведения о приложении методов математической статистики к задачам метрологии и обработки экспериментальных данных, в том числе с использованием компьютера, вы можете найти, например, в [15]. Мы же здесь остановимся на главном — расчете случайной погрешности.

В основе математической статистики лежит понятие о нормальном распределении. Не следует думать, что это нечто заумное — вся теория вероятностей и матстатистика, как прикладная дисциплина в особенности, основаны на здравом смысле в большей степени, чем какой-либо другой раздел математики.

Не составляет исключения и нормальный закон распределения, который наглядно можно пояснить так. Представьте себе, что вы ждете автобус на остановке. Предположим, что автопарк работает честно, и надпись на табличке «интервал 15 мин» соответствует действительности. Пусть также известно, что предыдущий автобус отправился от остановки ровно в 10:00. Вопрос — во сколько отправится следующий?

Как бы идеально ни работал автопарк, совершенно ясно, что ровно в 10:15 следующий автобус отправится вряд ли. Пусть даже автобус выехал из парка по графику, но наверняка тут же был вынужден его нарушить из-за аварии на перекрестке. Потом его задержал перебегающий дорогу школьник. Потом он простоял на остановке из-за старушки с огромной клетчатой сумкой, которая застряла в дверях. Означает ли это, что автобус всегда только опаздывает? Отнюдь, у водителя есть план по выручке, и он заинтересован в том, чтобы двигаться побыстрее, потому он может кое-где и опережать график, не гнушаясь иногда и нарушением правил движения. Поэтому событие, заключающееся в том, что автобус отправится в 10:15, имеет лишь определенную вероятность, не более.

Если поразмыслить, то станет ясно, что вероятность того, что следующий автобус отправится от остановки в определенный момент, зависит также от того, насколько точно мы определяем этот момент. Ясно, что вероятность отправления в промежутке от 10:10 до 10:20 гораздо выше, чем в промежутке от 10:14 до 10:16, а в промежутке от 10 до 11 часов оно, если не возникли какие-то совсем уж форс-мажорные обстоятельства, скорее всего, произойдет наверняка. Чем точнее мы определяем момент события, тем меньше вероятность того, что оно произойдет именно в этот момент, и в пределе вероятность того, что любое событие произойдет ровно в указанный момент времени, равна нулю.

Такое кажущееся противоречие (на которое, между прочим, обращал внимание еще великий отечественный математик Колмогоров) на практике разрешается стандартным для математики способом — мы принимаем за момент события некий малый интервал времени δt. Вероятность того, что событие произойдет в этом интервале, уже равна не нулю, а некоей конечной величине δР, а их отношение δР/δt при устремлении интервала времени к нулю для данного момента времени равна некоей величине р, именуемой плотностью распределения вероятностей. Такое определение совершенно аналогично определению плотности физического тела (в самом деле, масса исчезающе малого объема тела также стремится к нулю, но отношение массы к объему конечно), и потому многие понятия математической статистики имеют названия, заимствованные из соответствующих разделов физики.

Правильно сформулированный вопрос по поводу автобуса звучал бы так: каково распределение плотности вероятностей отправления автобуса во времени? Зная эту закономерность, мы можем всегда сказать, какова вероятность того, что автобус отправится в определенный промежуток времени.

Интуитивно форму кривой распределения плотности вероятностей определить несложно. Существует ли вероятность того, что конкретный автобус отправится, к примеру, позже 10:30 или, наоборот, даже раньше предыдущего автобуса? А почему нет — подобные ситуации в реальности представить себе очень легко. Однако ясно, что такая вероятность намного меньше, чем вероятность прихода «около 10:15». Чем дальше в обе стороны мы удаляемся от этого центрального наиболее вероятного срока, тем меньше плотность вероятности, пока она не станет практически равной нулю (то, что автобус задержится на сутки — событие невероятное, скорее всего, если такое случилось, вам уже будет не до автобусов). То есть распределение плотностей вероятностей должно иметь вид некоей колоколообразной кривой.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки