В теории вероятностей доказывается, что при некоторых предположениях относительно вероятности конкретных исходов нашего события эта кривая будет иметь совершенно определенный вид, который называется
Рис. 13.6.
Далее мы поясним смысл отдельных параметров в этой формуле, а пока ответим на вопрос: действительно ли реальные события, в частности интересующие нас ошибки измерений, всегда имеют нормальное распределение? Строгого ответа на этот вопрос в общем случае нет, и вот по какой причине. Математики имеют дело с абстракциями, считая, что мы уже имеем сколь угодно большой набор отдельных
Однако все же интуитивно понятно, что, пока автобус ходит, какое-то, пусть теоретическое, распределение имеется. Такой идеальный бесконечный набор реализаций данного события носит название
На свете сколько угодно случайных событий и процессов, имеющих распределение, совершенно отличное от нормального, однако считается (и доказывается с помощью так называемой центральной предельной теоремы), что в интересующей нас области ошибок измерений, при большом числе измерений и истинно случайном их характере, все распределения ошибок — нормальные. Предположение о большом числе измерений не слишком жесткое — реально достаточно полутора-двух десятков измерений, чтобы все теоретические соотношения с большой степенью точности соблюдались на практике. А вот про истинную случайность ошибки каждого из измерений можно говорить с изрядной долей условности — неслучайными их может сделать одно только желание экспериментатора побыстрее закончить рабочий день. Но математика тут уже бессильна.
Полученные опытным путем характеристики распределения называются оценками параметров, и, естественно, они будут соответствовать «настоящим» значениям с некоторой долей вероятности — наша задача и состоит в том, чтобы определить интервал, в котором могут находиться отклонения оценок от «истинного» значения, и соответствующую ему вероятность. Но настало время все же пояснить — что же это за параметры?
В формуле на рис. 13.6 таких параметра два: величины
Математическое ожидание есть абсцисса максимума кривой нормального распределения (в нашем примере с автобусом — это время 10:15), а дисперсия, как видно из рис. 13.6, характеризует «размытие» кривой относительно этого максимума — чем больше дисперсия, тем положе кривая. Эти моменты имеют прозрачный физический смысл (вспомните аналогию с физическим распределением плотностей): математическое ожидание есть аналогия центра масс некоего тела, а дисперсия характеризует распределение масс относительно этого центра (хотя распределение плотности материи в физическом теле далеко от нормального распределения плотности вероятности).
Оценкой
(2)
Здесь
Оценка
(3)