Читаем Занимательная электроника полностью

В теории вероятностей доказывается, что при некоторых предположениях относительно вероятности конкретных исходов нашего события эта кривая будет иметь совершенно определенный вид, который называется нормальным распределением вероятностей или распределением Гаусса. Вид кривой плотности нормального распределения и соответствующая формула показаны на рис. 13.6.



Рис. 13.6.Плотность нормального распределения вероятностей


Далее мы поясним смысл отдельных параметров в этой формуле, а пока ответим на вопрос: действительно ли реальные события, в частности интересующие нас ошибки измерений, всегда имеют нормальное распределение? Строгого ответа на этот вопрос в общем случае нет, и вот по какой причине. Математики имеют дело с абстракциями, считая, что мы уже имеем сколь угодно большой набор отдельных реализаций события (в случае с автобусом это была бы бесконечная таблица пар значений «плотность вероятности — время»). В реальной жизни такой ряд невозможно получить не только потому, что для этого потребовалось бы бесконечно долго стоять около остановки и отмечать моменты отправления, но и потому, что стройная картина непрерывного ряда реализаций одного события (прихода конкретного автобуса) будет в конце концов нарушена совершенно не относящимися к делу вещами: маршрут могут отменить, остановку перенести, автопарк обанкротится, не выдержав конкуренции с маршрутными такси… да мало ли что может произойти такого, что сделает бессмысленным само определение события.

Однако все же интуитивно понятно, что, пока автобус ходит, какое-то, пусть теоретическое, распределение имеется. Такой идеальный бесконечный набор реализаций данного события носит название генеральной совокупности. Именно генеральная совокупность при некоторых условиях может иметь, в частности, нормальное распределение. В реальности же мы имеем дело с выборкой из этой генеральной совокупности. Причем одна из важнейших задач, решаемых в математической статистике, состоит в том, чтобы, имея на руках две разные выборки, доказать, что они принадлежат одной и той же генеральной совокупности — проще говоря, что перед нами есть реализации одного и того же события. Другая важнейшая для практики задача состоит в том, чтобы по выборке определить вид кривой распределения и ее параметры.

На свете сколько угодно случайных событий и процессов, имеющих распределение, совершенно отличное от нормального, однако считается (и доказывается с помощью так называемой центральной предельной теоремы), что в интересующей нас области ошибок измерений, при большом числе измерений и истинно случайном их характере, все распределения ошибок — нормальные. Предположение о большом числе измерений не слишком жесткое — реально достаточно полутора-двух десятков измерений, чтобы все теоретические соотношения с большой степенью точности соблюдались на практике. А вот про истинную случайность ошибки каждого из измерений можно говорить с изрядной долей условности — неслучайными их может сделать одно только желание экспериментатора побыстрее закончить рабочий день. Но математика тут уже бессильна.

Полученные опытным путем характеристики распределения называются оценками параметров, и, естественно, они будут соответствовать «настоящим» значениям с некоторой долей вероятности — наша задача и состоит в том, чтобы определить интервал, в котором могут находиться отклонения оценок от «истинного» значения, и соответствующую ему вероятность. Но настало время все же пояснить — что же это за параметры?

В формуле на рис. 13.6 таких параметра два: величины μ и σ. Они называются моментами нормального распределения (аналогично моментам распределения масс в механике). Параметр μ называется математическим ожиданием (или моментом распределения первого порядка), а величина σ — средним квадратическим отклонением. Нередко употребляют его квадрат, обозначаемый как D или просто σ2, и носящий название дисперсии (или центрального момента второго порядка).

Математическое ожидание есть абсцисса максимума кривой нормального распределения (в нашем примере с автобусом — это время 10:15), а дисперсия, как видно из рис. 13.6, характеризует «размытие» кривой относительно этого максимума — чем больше дисперсия, тем положе кривая. Эти моменты имеют прозрачный физический смысл (вспомните аналогию с физическим распределением плотностей): математическое ожидание есть аналогия центра масс некоего тела, а дисперсия характеризует распределение масс относительно этого центра (хотя распределение плотности материи в физическом теле далеко от нормального распределения плотности вероятности).

Оценкой mх математического ожидания μ служит хорошо знакомое нам со школы среднее арифметическое:

(2)

Здесь n — число измерений; i — текущий номер измерения (i = 1….,n); xi — значение измеряемой величины в i-м случае.

Оценка s2 дисперсии σ2 вычисляется по формуле:


(3)

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки