Читаем Жар холодных числ и пафос бесстрастной логики полностью

По существу, мы рассмотрели пример нормального алгорифма—алгорифма, состоящего из единственной команды. Если бы команда была не одна, то пользование алгорифмом не стало бы сложнее: в случае, когда самая верхняя команда не срабатывает, надо переходить к следующей команде; если и она не сработает, к следующей, и т. д. После срабатывания некоторой команды происходит возврат к самой верхней команде и ее проверка на применимость к полученному только-что слову и т. д. Если в ходе этого процесса встретится команда, содержащая после стрелки точку, процесс останавливается и слово, полученное в результате применения этой команды (называемой заключительной), объявляется результатом работы алгорифма.

Может случиться, что на каком-то такте работы алгорифма ни одна из формул подстановок (ни одна из команд) не окажется применимой. Тогда произойдет естественный обрыв процесса переработки слов, и слово, при этом полученное, считается результатом. Если же в процессе применения алгорифма к некоторому слову не происходит ни естественного обрыва процесса, ни применения заключительной формулы подстановки—то есть если процесс переработки исходного слова продолжается неограниченно долго, то считается, что алгорифм к этому слову не применим.

Описанные правила настолько элементарны, что мы предоставляем читателю самостоятельно проследить за действием алгорифма

1 -> 2

2 -> 3

3 -> 444,

примененного к слову 12—11 = 1. Для контроля мы выпишем последовательность слов, получаемых после каждого применения подходящей команды, разделяя их точкой с запятой: 12—11 = 1 (исходное слово);

22—11=1; 22—21 = 1; 22 — 22 = 1; 22 — 22 = 2; 32 — 22 = 2;

33 —22 =2; 33 — 32 = 2; 33 — 33 = 2; 33 — 33 = 3; 4443 — 33 = 3;

444444 — 33 = 3; 444444 — 4443 = 3; 444444 — 444444 = 3;

444444 — 444444 = 444.

На последнем слове процесс оборвется, и оно окажется результатом. В этом случае говорят, что данный алгорифм переработал слово 12—11=1 в слово 444444 — 444444 = 444.

Команды нормальных алгорифмов по своей структуре и принципу действия похожи на четверки из тьюринговых программ. Естественно возникает предположение, что нормальные алгорифмы «включают» в себя машины Тьюринга.

И действительно, как было доказано, с помощью нормальных алгорифмов можно «промоделировать» любой вычислительный процесс, реализуемый на тьюринговой машине. Отсюда и из доказанной в математической логике теоремы о возможности осуществления любого рекурсивного процесса на некоторой машине Тьюринга вытекает, что алгорифмы Маркова могут делать все то, что делают рекурсивные функции. Но не охватывают ли марковские алгорифмы более широкого круга процедур? Ведь алфавиты и списки формул подстановок могут быть исключительно разнообразными.

Вскоре после создания теории нормальных алгорифмов, в 1953 году была опубликована теорема, доказанная учеником А. А. Маркова В. К. Детловсом, о том, что всякий процесс, осуществимый с помощью нормального алгорифма, осуществим также посредством некоторой рекурсивной функции.

Это значит, что рекурсивные функции и машины Тьюринга «равнообъемны» нормальным алгорифмам и что тезисы Чёрча и Тьюринга получают подкрепление в виде принципа нормализации (это название предложено А. А. Марковым; можно условиться называть этот принцип и по-другому, например, тезисом Маркова): всякое точное общепонятное предписание, определяющее произвольный потенциально осуществимый процесс переработки слов в каком-либо алфавите, ведущий от варьируемых исходных данных к некоторому результату, эквивалентно некоторому нормальному алгорифму.

Общность этого тезиса становится ясной, если учесть, что любой вычислительный процесс, а также всякий другой строго детерминированный процесс, протекающий в переменной, но однотипной среде, можно понимать как переработку слов в определенном алфавите.

Как и Чёрч в статье 1936 года, А. А. Марков приводит в своей фундаментальной монографии «Теория алгорифмов» ряд аргументов в пользу принципа нормализации. Как и у Чёрча, это не доказательства, а только соображения, к которым можно отнести прилагательное «убедительные». Они апеллируют прежде всего к практике математики. Исследования Маркова, давшие ему возможность найти разумные основания для подкрепления его тезиса, следует считать важным этапом в становлении основной гипотезы теории алгоритмов (теории эффективной вычислимости) — гипотезы, общий смысл которой состоит в утверждении, что различные, оказавшиеся эквивалентными друг другу, уточнения идеи алгоритма и вычислимости — рекурсивные функции, тьюринговы машины, нормальные алгорифмы[19] — исчерпывающим образом описывают (каждое — в терминах своего специфического языка) эту идею.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика