Читаем Жар холодных числ и пафос бесстрастной логики полностью

Ситуацию с этой гипотезой можно сравнить с ситуацией, сложившейся в физике вокруг закона сохранения энергии. Как и всякий закон теоретической физики, доказать его так, как математики доказывают теоремы, невозможно. Но этот закон — положение, в пользу которого наука находит все новые аргументы, идущие с самых разных сторон. Развитие теории и организация все более точных экспериментов порождают дополнительные «соображения», обладающие свойством убедительности (если говорить о теоретических соображениях, то в последнее время это — большей частью «соображения симметрии», понимаемой в довольно широком смысле). Они ложатся дополнительным грузом на чашу весов нашего знания. Кроме того — и это самое существенное, вся человеческая практика, изменяющая мир, в частности вся современная промышленная технология, основывается в большой мере на фундаментальных законах физики, а следовательно, и на одном из наиболее важных утверждений физики — законе сохранения энергии.

Не так ли обстоит дело и в отношении основной гипотезы-теории алгоритмов в ее различных спецификациях— тезисов Чёрча, Тьюринга, Маркова? Вот что, например, говорит о своем тезисе сам автор «принципа нормализации:

«На чем же может быть основана уверенность в справедливости принципа нормализации алгорифмов, то есть в справедливости тех предсказаний, которые делаются на его основании? В основном на том же самом, на чем основана наша уверенность в правильности известных нам физических законов, на опыте.

А опыт, подтверждающий принцип нормализации, огромен. Ведь математикой люди занимаются довольно долго — не менее 4000 лет. За это время было придумано немало различных алгорифмов. И среди них не известно ни одного ненормализуемого. Как-никак, а это веский довод в пользу принципа нормализации. Не менее веский, чем, скажем, опытное подтверждение закона сохранения энергии»[20].

Наличие нескольких, а не одного, тезисов, причем тезисов между собой эквивалентных (несмотря на их большие внешние различия), имеет важное значение для осмысления процесса познания. Аппарат рекурсивных функций наиболее «архаичен», он ближе всего к классической математике, он связан с числами и только с числами. Машины Тьюринга уже отстоят значительно дальше от тех понятий, которые по традиционному мнению должны интересовать математиков. Но «механичность» мышления Тьюринга имеет те же корни, что и мышление великого Лейбница, мечтавшего построить машину, «делающую все». В лице Тьюринга математика вновь повернулась к своему первоисточнику — материальным процессам, теперь уже будучи в состоянии промоделировать значительную их часть своими элементарными знаковыми операциями. Наконец, алгорифмы Маркова на первый взгляд могут показаться даже вообще не имеющей отношения к математике «игрой в слова». Но как раз в этом резком расширении круга рассматриваемых структур и процессов и сказалась логическая зрелость математики и ее характернейшая тенденция.

Так к началу 50-х годов нашего века, то есть к моменту выхода на сцену электронных вычислительных машин, как итог развития всей предшествующей математики и логики и как непосредственный результат работ Чёрча, Тьюринга и Маркова, стал вырисовываться обширный комплекс процессов, обладающих следующими особенностями.

1. Они в принципе строго детерминированы, то есть каждый предыдущий этап полностью определяет последующий.

2. Они потенциально осуществимы — в том смысле, что при достаточно долгом протекании без внешних помех они приводят (могут приводить) к фактическому результату.

3. Они имеют «атомарное» строение — складываются из совокупности элементарных операций, которых имеется всего несколько видов.

4. Элементарные операции, сочетание которых порождает бесконечное разнообразие таких процессов, настолько хорошо обозримы, наглядны и соответствуют особенностям человеческого восприятия и мышления, что их нетрудно объяснить любому человеку.

А существуют ли в мире другие процессы?

Вопрос этот не случаен. В случае отрицательного ответа в сферу описанных процессов будут включены и явления. происходящие в нас самих, наша внутренняя жизнь. Эта возможность представляется оскорбительной, унижающей человеческое достоинство. Признать полную принципиальную детерминированность психических явлений - не значит ли это признать несвободу поведения человека? И разве можно какую-то заводящуюся ключом игрушку — машину Тьюринга — сопоставить с поведением вольной в своих поступках личности, например, с поведением и творческой работой Пушкина? Да не только Пушкин, разве любой из нас, самый скромный из нас, согласится признать, что его действия в каждую данную секунду, в каждую долю секунды, все его тончайшие помыслы, фантазии, мечты, стремления, эмоции могут быть описаны какими-то очень простыми рекурсивными функциями?

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика