Читаем Жар холодных числ и пафос бесстрастной логики полностью

Как звучит соответствующий тезис? Очевидно, так: всякая конечная вычислительная (в частности, логическая, дедуктивная) процедура, характеризующаяся детерминированностью своего выполнения, может быть осуществлена на цифровой вычислительной машине с достаточно большой памятью за достаточно большое время.

Эквивалентность этого утверждения, которое можно назвать тезисом кибернетики, остальным рассмотренным нами тезисам является сильным аргументом в их пользу. Ведь «на мельницу» кибернетического тезиса ежедневно и ежечасно «льет воду» практика программирования и вычислительная работа на ЭВМ, а из-за эквивалентности всех четырех тезисов мы можем сказать, что вода попадает и на три остальные мельницы. За 20 с лишним лет широкого применения вычислительной техники в самых разнообразных областях науки, техники, медицины, планирования, управления, прогнозирования и т. д. не было ни одного случая, чтобы задача, четко сформулированная на естественном или формализованном языке, сформулированная с помощью таблиц, графиков, номограмм, схем — самыми разнообразными путями и методами и не выходящая за разумные рамки в смысле трудоемкости требующихся для ее решения операций, не смогла быть записана в виде машинной программы.

Другими словами, не было случая, чтобы к математику, умеющему ставить задачи и программировать их для ввода в ЭВМ, пришел представитель какой-либо нематематической профессии — администратор, экономист, инженер, деятель искусства, ученый и т. д.— попросил бы его осуществить на машине процесс полностью детерминированного на каждом этапе вычисления, логического вывода, выделения некоторого объекта из некоторого множества объектов, расчета вариантов, выбора одних гипотез и исключения других и т. д., то есть процесс решения ясно и четко поставленной задачи из какой-то области деятельности, и чтобы математик совершенно ясно понял проблему, но ответил заказчику, что ее в принципе нельзя решить на ЭВМ. В худшем случае математик может ответить так: программа, соответствующая вашей задаче, на данной машине не пройдет, поскольку у машины слишком мал объем памяти и она слишком медленно работает, чтобы получить результат за разумное время.

Перефразируя выражение А. А. Маркова, заметим, что это, как-никак, веский аргумент. Пусть практика работы на ЭВМ насчитывает не 4000, а лишь 20— 25 лет, но какая это практика! Чего только ни делали с помощью ЭВМ — и составляли планы отраслей хозяйства, и находили выгоднейшие варианты перевозок, и играли в различные игры, но ни единого раза проблема, если она была четко поставлена, не упиралась в тот барьер, что для нее в принципе невозможно написать программу. Можно ли, однако, сказать, что все четко поставленные, но не решенные до сих пор на ЭВМ проблемы (или такие проблемы, относительно которых имеется уверенность, что их со временем можно поставить четко) просто ждут своей очереди: того дня, когда быстродействие и память «компьютеров» станут достаточно большими?

В качестве примера рассмотрим программирование на ЭВМ шахматной игры. Шахматы часто справедливо сравнивают с искусством, и для этой древней игры придумали даже свою «музу» — Каиссу. Широко известны многочисленные попытки моделировать процесс шахматного мышления на машине; их пока нельзя признать успешными, поскольку самые удачные шахматные программы значительно уступают мышлению хороших шахматистов. Каковы, однако, перспективы «машинных шахмат»?

Тезис кибернетики утверждает, что всякий детерминированный процесс, сущность которого можно объяснить человеку, потенциально осуществим машиной, то есть будет фактически выполнен на ЭВМ, которой предоставлено неограниченное время и которая имеет неограниченную память[4]. Первое условие можно переформулировать как условие достаточного быстродействия, поэтому данный тезис можно выразить еще и так: процесс, о котором сказано выше, всегда можно фактически выполнить на машине с достаточно высоким быстродействием и обладающей достаточно емким запоминающим устройством. Если бы такая машина существовала, то «шахматная проблема» давно была бы решена.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика