Читаем Жар холодных числ и пафос бесстрастной логики полностью

Программа для ее решения не представляет трудности; идея такой программы была выдвинута одним из основателей кибернетики Клодом Шенноном больше двадцати лет назад[5]. Соответствующий метод называется «построением дерева игры», и смысл его заключается в следующем. Выписываются все варианты первого хода белых; для каждого из них выписываются все пары ходов, состоящие из текущего первого хода белых и возможного, допустимого правилами игры ответного хода черных (то есть с каждым возможным ходом белых сопоставляются по очереди все возможные ходы черных, включая нелепые); затем с каждым ходом черных сопоставляются по очереди все возможные ходы белых и так далее. Если изобразить это на диаграмме, возникает ветвящееся «дерево» (отсюда и название метода). Ветви будут обрываться на ходах, ведущих к поражению одной из сторон или ничейным ситуациям.

Построив такое дерево, можно проанализировать его, идя обратным путем — от концов веток к корню дерева, и установить, имеется ли такой первый ход белых, что, какой бы ни сделали черные ответный ход, существует такой второй ход белых, что, какой бы ни сделали второй ход черные, можно будет найти такой третий ход белых... и т. д., что черные терпят поражение. Если такой первый ход существует и тот, кто начинает игру, знает свойства ее дерева, он будет выигрывать в ста процентах случаев, независимо от того, знает ли свойства дерева игры его противник. Если такого первого хода не существует, то сторона, делающая первый ход, может выиграть только при условии, что противник не знает дерева игры и вследствие этого делает слабые ходы. Если черные знают свойства дерева игры, то тоже возможны различные ситуации. Быть может, в этом случае черные, опираясь на свойства дерева игры, при любых ходах белых могут обеспечить себе ничейный результат. Но этого может и не быть — это будет означать, что шахматы есть игра, в которой белые при абсолютно правильной игре всегда выигрывают[6].

Однако в любом случае ясно, что шахматы в принципе, так сказать, запрограммированы — несложные правила движения фигур и характеристика матовых ситуаций без труда переводятся на язык элементарных действий, доступных ЭВМ. Будь машины более быстродействующими и имей они достаточно большую память, они просчитали бы все варианты игры и запомнили все ее дерево, превратившись в «абсолютных» шахматистов. Эта игра в таком случае потеряла бы «интеллектуальный» интерес как объект исследования, подобно играм в «волки и овцы» и «крестики и нолики», свойства которых известны: в первой игре всегда выигрывают овцы, если они играют правильно, а во второй игре при наилучшей стратегии сторон всегда имеет место ничья.

Таким образом, следует отличать потенциальную осуществимость, о которой идет речь в кибернетическом тезисе (как и в других тезисах о вычислимости), от осуществимости посредством реально имеющихся средств. Ибо совпадать оба вида вычислимости могут только для сверхъестественного интеллекта.

В романе М. А. Булгакова «Мастер и Маргарита» есть сцена, в которой Воланд — этот гётевский Мефистофель русской литературы — с увлечением играет с другими представителями нечистой силы в шахматы. Поскольку Воланда и его свиту можно считать бесконечно быстрыми вычислителями с бесконечно большим объемом памяти (это подтверждается событиями, описанными в романе), игра в шахматы должна быть для них нелепым и скучным занятием; все дерево игры должно быть перед ними как на ладони! Игра, таким образом, не может быть для них интересной, и получается, что данная сцена с «кибернетической» точки зрения не очень убедительна. Что же касается людей, то шахматы не утратили бы для них интереса, если бы даже свойства игры были полностью выяснены и существовали автоматы, реализующие «абсолютные» шахматные игры; ведь сохранились (да и какой интерес вызывают!) состязания по бегу, хотя автомобили, поезда и самолеты «бегают» куда быстрее людей...

Но вернемся к математику, получившему заказ на выполнение умственной работы с помощью «усилителя интеллекта» — мощной вычислительной техники. Помимо того случая, когда длительность и объем соответствующих вычислений выходят за рамки возможностей данной ЭВМ, математик ответит заказчику отказом еще в одном случае если тот, кто предложил ему задачу, не сможет толково объяснить, какой детерминированный процесс нужно осуществить. Есть пословица «хорошо поставить проблему — значит наполовину решить ее»; для математика, в распоряжении которого имеется ЭВМ, это особенно справедливо.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика