Читаем Жар холодных числ и пафос бесстрастной логики полностью

В этих возражениях проявляется естественная неприязнь человека к автоматизму, бездушию, слепому выполнению программы. Конечно, автоматизм в поведении человека отвратителен, и прожить, строго выполняя намеченную программу, просто невозможно. Конечно, все, даже фанатически преданные математике отшельники, не могли бы и дня просуществовать без неожиданных для самих себя поступков, без юмора — этого воплощения тяги к странности и непредвиденности. Все это так, но ведь речь идет не об этом. Вопрос ставится следующим образом: состоит ли грандиозно сложный процесс рождения, функционирования и умирания человека (как и любой другой процесс во Вселенной) из композиции гигантского числа рекурсивно описываемых процессов — подобно тому, как прекрасный цветок розы состоит (как физическое тело) из гигантского количества ничем не пахнущих и не имеющих цвета атомов?

В такой постановке проблема становится серьезной.

8. ВОЗМОЖНОСТИ ВЫЧИСЛИТЕЛЬНЫХ МАШИН И ЧЕЛОВЕК


Множественность типов вычислимости есть та основа, которая позволяет подвергнуть анализу запутанный клубок проблем, относящихся к вопросу: «Что может делать электронная вычислительная машина?». ЭВМ в первом приближении можно охарактеризовать как гигантский арифмометр, работающий с огромной скоростью. Однако это — только в первом приближении: по сравнению с арифмометром у ЭВМ имеются две принципиально важные конструктивные особенности.

Обычный арифмометр (например, марки «Феликс») после выполнения заданной ему операции сложения, умножения и т. д, прекращает работу и ждет дальнейших «распоряжений». Чтобы выполнить с помощью арифмометра действие над полученным результатом, нужно западе набрать последний на его клавиатуре и нажать на соответствующую кнопку, а если арифмометр не электрический, то покрутить ручку. Электронная вычислительная машина может повторять арифметическую операцию сколько угодно раз подряд, беря в качестве исходных данных числа, полученные ею на одном из предыдущих этапов. На арифмометре, например, легко можно прибавить к любому числу единицу, но чтобы после этого сделать еще что-то, требуется новое вмешательство человека.

ЭВМ же может быть введена в такой режим, когда она будет возвращаться к собственному результату без дальнейших распоряжений и станет осуществлять потенциально бесконечный процесс многократного применения функции «число, непосредственно следующее за...», то есть последовательного получения возрастающих натуральных чисел. Вторым отличием электронной вычислительной машины от обычного арифмометра является то, что она умеет выполнять простейший условный оператор — проверять, равно ли нулю некоторое число, и в зависимости от этого производить одно или другое действие. Таковы принципиальные отличия современного «супермозга» от арифмометра, а значит, и от счетов, а значит, и от десяти пальцев математиков каменного века. «Непринципиальное» отличие относится к скорости действия и объему памяти. Но количество здесь переходит в качество.

Знакомство с основными результатами современной математической логики, теории логического вывода и теории вычислимости (теории алгоритмов) позволяет понять почему «большой арифмометр», дополненный двумя упомянутыми усовершенствованиями, «может делать все».

Начнем с его способности проверять условия. Проверка элементарного условия x = 0 для электронного автомата несложна[1]. Предположим теперь, что число x получается как результат вычисления некоторой одноместной общерекурсивной[2] функции f. Отсюда сразу следует, что машина способна проверять истинность любого общерекурсивного предиката f(у) = 0. Но способна ли ЭВМ, хотя бы в принципе, вычислять значения любой общерекурсивной функции?

Функция «следования за», конечно, не представляет труда для «автоматического арифмометра». Еще легче выполнить ему вычисление функции, тождественно-равной нулю — вместо любого данного числа написать нуль. Так же легко осуществит автомат вычисление проектирующей функции, поскольку это есть не что иное, как выбор из данной группы чисел такого-то по порядковому номеру числа. Эту операцию можно реализовать на машине, например, так: в машинную память вводятся по одному числу из заданной группы в n чисел, причем при каждом введении числа предыдущее стирается из памяти; одновременно с вводом каждого такого числа некоторое (другое) число, хранящееся в определенной ячейке запоминающего устройства, увеличивается на единицу — как говорят в этом случае, работает счетчик числа операций. Когда разность между числом, накопившимся на счетчике, и данным числом i (нижним индексом проектирующей функции Iin) станет равной нулю, сработает условный оператор, и число, находящееся в этот момент в памяти, пойдет на выход.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика