Читаем Жар холодных числ и пафос бесстрастной логики полностью

К началу нашего столетия математическая логика и «языковая» логика настолько близко подошли друг к другу, что многими учеными стали рассматриваться как два аспекта одной науки. Произошло великое воссоединение разошедшихся когда-то направлений человеческой мысли. Многое теперь было готово для появления кибернетики; однако не было ясного осознания того, что все процедуры рассуждений и вычислений, производимые по четким правилам, формализованные вычислительно-дедуктивные процессы — в определенном смысле (и при определенных ограничениях) эквивалентны и что их изучение разными науками обусловлено лишь историческими и методологическими причинами.

Поколение математиков и логиков, родившихся уже в XX веке, пользуясь созданным к этому времени мощным аналитическим аппаратом, установило довольно четкие границы понятий «вычислимость» и «выводимость». В век дифференциации наук логика стремительно повела широкий комплекс научных дисциплин к синтезу. Оказалось, что нет принципиальной разницы между арифметикой, логикой и механическим моделированием поведения людей и вещей. Оказалось, что все эти средства потенциально одинаково пригодны для моделирования, то есть адекватного (часто, правда, только с тем, или иным приближением) описания и предсказания любого детерминированного процесса.

Вышедшая в это время на научную сцену семиотика позволила взглянуть на программу формализации математики, провозглашенную Гильбертом, не как на идеалистическую утопию, а как на серьезную программу разработки средств знакового моделирования регулярно осуществляемых процедур дискретного рода. Но как раз к этому моменту технические достижения позволили претворить знаковое моделирование в физическое. Только недавно соединившиеся математика и логика объединились теперь с электроникой и, взаимодействуя с науками о жизни и технике, положили начало кибернетике.

«Бумажная» математика, разумеется, от этого не пострадала; совсем наоборот, она получила теперь в свое распоряжение мощные вспомогательные средства. Громадное же прикладное значение кибернетики, скажем точнее — социальное ее значение — сделало таким же громадным и значение математики, которая теперь органично включила в себя логику. Сейчас мы видим уже контуры «супернауки», в которой наименования «математика», «логика», «теория логического вывода», «теоретическая кибернетика», «программирование», «теория систем», «семиотика» и другие становятся названиями отделов и подотделов.

Однако диалектика развития такова, что именно появление кибернетики поставило серьезнейшие проблемы. Иллюзия Лейбница, будто с появлением «механического интеллекта» все станет просто, рассеялась как дым. Диалектический процесс познания нельзя в целом автоматизировать— истина по своей сути не формальна, а содержательна. И чтобы перекинуть мост между формальной доказуемостью и содержательной истинностью, пришлось разработать специальную науку —логическую семантику.

Лейбниц думал — и многие еще недавно склонны были с ним соглашаться, что все, происходящее в реальном мире и сфере абстракций, в принципе может быть описано на формализованном языке, позволяющем сводить решение любых научных или практических вопросов к вычислениям. Теперь мы понимаем, что это не так. Результаты Гёделя накладывают четкие ограничения в возможности подобного подхода. Кроме того, приходится учитывать то, что сами формализованно-детерминистские предписания могут носить различный характер —они могут иметь вероятностную природу и «уживаться» с принятием решений и актами «свободного» (то есть не предопределенного детерминистским предписанием) выбора.

Возник взгляд — его со всей решительностью высказал «отец кибернетики» Н. Винер, что мы живем в «вероятностной вселенной»*. Здесь своеобразную перефразировку получила другая идея того же Лейбница — идея о множественности «возможных миров».

В настоящее время, во всяком случае, бесспорно, что на многие реальные процессы следует смотреть как на формализуемые, детерминируемые, происходящие по четким, однозначно понимаемым правилам именно «в принципе». Но быть формализованным, детерминированным в принципе — это не то же самое, что быть фактически представленным на языке какой-то формальной системы или быть детерминированным конкретным, доступным для выявления и формулировки алгоритмом. Да и сами формализуемость, детерминистичность, регулярность поведения — словом, формальность и алгоритмичность — могут быть разной «силы». Поэтому часто говорят о формализуемости и детерминируемости различной степени и для исследования более слабых их вариантов используют разнообразный «нелогический» математический аппарат — теорию игр, исследование операций, теорию массового обслуживания, теорию статистических решений, математическую теорию планирования эксперимента — аппарат, так или иначе связанный с теоретико-вероятностными представлениями и методами.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика