11. См. Д. Гильберт. Основания геометрии. М.— Л., 1948.
101
12. И вступил по этому поводу в полемику с Гильбертом (переписка Фреге и Гильберта по данному вопросу опубликована в «Sitzungsberichte der Heidelberger Akademie der Wissenschaften.». Jahrgang 1940, 6. Abhandlung, Heidelberg, 1940; 1941, 2. Abhandlung, Heidelberg, 1941).
102
13. Гильберт говорит: «с применением метода идеальных элементов связано одно условие, одно единственное, но необходимое, это доказательство непротиворечивости. Именно, расширение посредством пуюбщения идеальных элементов дозволено только в том случае, когда при этом в старой, более узкой области не-возникает никаких противоречий, то есть если соотношения, которые выявляются для старых образов при исключении идеальных образов, всегда остаются справедливыми в этой старой области» (Д. Гильберт. Обоснования математики. Добавление IX в его книге «Основания геометрии», с. 376).
103
14. Д. Гильберт. О бесконечном. Добавление VIII в его книге «Основания геометрии», с. 350.
104
15. См.: Проблемы Гильберта. М., 1969, с. 22.
105
16. Д. Гильберт. О бесконечном. Добавление VIII в его книге «Основания геометрии», с. 351.
106
17. Д. Гильберт. Обоснования математики. Добавление IX в его книге «Основания геометрии», с. 381—382. Под «реальными высказываниями» Гильберт имеет в виду высказывания, не содержащие «идеальных элементов».
107
18. Обращаем внимание на различие между доказательством теорем в формальной системе и доказательством теорем о самой формальной системе. Доказательства последнего рода называются
108
19. Оно, правда, представляет собой сведение к абсурду, но в такой его форме, которая приемлема даже для Брауэра: ни закон исключенного третьего, ни закон снятия двойного отрицания (также отвергаемый интуиционистами) здесь не используется.
109
20. Этот доклад составляет добавление IX в книге «Основания геометрии».
110
21. П. С. Новиков. Элементы математической логики. М.» 1959, с. 36.
111
1. О содержании этой работы Гёделя можно подробнее прочесть в кн.: Э. М. Чудинов. Теория относительности и философия. М.. 1974, с. 232 и далее.
112
2. K. Godel. Uber formal unentscheidbare Satze der Principia Mathematica und vervandter Systeme. -— «Monatchefter fur Mathematik und Physik» Bd 38, 1931.
113
3. Понятие тождественной истинности, которое в гл. 3 было нами разъяснено в применении к формам высказываний, трактуемым на уровне логики высказываний (алгебры логики), естественным образом распространяется на классическую логику предикатов и строящиеся на ее основе логико-математические системы. Поскольку, однако, мы не можем здесь рассказать, как происходит такое распространение, мы будем вместо «тождественной истинности» употреблять более общее (хотя и менее определенное) понятие «содержательной истинности» (истинности по смыслу).
114
4. Заметим, что если из доказуемости (или истинности) некоторой формулы (высказывания) следует ее недоказуемость, то это не означает еще формально-логического противоречия. Таковое будет иметь место, если, кроме этого, из недоказуемости будет следовать доказуемость.
115
5. Отметим, что в своей теореме Гёдель использовал более сильное условие, чем «обычная» непротиворечивость, смысл которой был кратко пояснен в главе 5, с. 120—121. Однако впоследствии было показано, что для его теоремы достаточно и «обычной» непротиворечивости.
116
6. П. С. Новиков. Элементы математической логики. М., 1989, с. 36.
117
7. А. Н. Нагель. Дж. Р. Ньюмен. Теорема Гёделя. М., 1970. с. 58—60.
118
8. Краткий, но достаточно ясный обзор проблематики исследований формальных систем читатель найдет в гл. I кн.: С. Клини. Математическая логика. М., 1973.
9. Одно из таких доказательств приводится в кн.: Э. Мендельсон. Введение в математическую логику. М., 1971, с. 282—295.
119
1. Совокупность этих допущений составляет то, что обычно называют
120
2. Более строго операцию подстановки можно задать следующим образом. По n-местным функциям q1..., gm и m-местной функции h строится n-местная функция f такая, что для любых x1, x2,..., Хn
f(x1, x2,..., Хn) = h(x1, ... Хn),... gm(x1,... Хn)).
121