Читаем Жар холодных числ и пафос бесстрастной логики полностью

20. В построении самого Фреге фигурировали не схемы аксиом, а конкретные аксиомы, в связи с чем в числе постулатов имелось еще одно правило вывода — так называемое правило подстановки. Однако мы следуем его системе лишь в самых общих- чертах. Заметим, что символика Фреге резко отличалась от обычной линейной логической и математической символики. Она носила «рисунчатый» характер и не привилась.

79

21. Используя «родство» эквиваленции (которую без труда можно ввести в исчисление Фреге) с отношением равенства и согласовав выразительные средства этого исчисления со-средствами описанного в гл. 3 исчисления равенств (равносилъноетей) формул, можно показать, что эти исчисления в определенном смысле переводимы друг в друга — имеют одинаковую дедуктивную силу.

80

22. Ниже излагается лишь общая идея фрегевского определения натуральных чисел. Полностью изложить его подход здесь, разумеется, не представляется возможным.

81

23. Об определении натуральных чисел как конечных кардинальных чисел (по Кантору) см., например: Н. Бурбаки. Теория множеств. М., 1965, с. 197 и далее.

81

24. J. van Heienoort. From Frege to Godel. A Source Book in Mathematical Logic. Cambridge (Mass.), 1967, p. 124—125.

82

25. Под идеографией Рассел имеет в виду логическую символику.

83

26. В теории Фреге предикаты рассматривались как частный случай функций, а именно, как функции, принимающие в качестве своих значений значения «истинно» и «ложно». Эта точка зрения на предикаты общепринята и в настоящее время при содержательном исследовании закономерностей «мира свойств и отношений».

84

27. Имеется в виду книга Б; Рассела «Принципы математики», которая вышла два года спустя(В. Russell. The Principles of Mathematics. Cambridge (Engl.), 1993).

85

28. Этими словами начинается послесловие Фреге ко второму тому «Основных законов арифметики» (с. 253).

86

29. X. Б. Карри. Основания математической логики. М., 1969, с. 32.

87

30. См. L. Kreiser. Geschichte und logisch-semantische Probleme des wissenschaftlichen Werkes Fregess. In: G. Frege. Schriften zur Logik. Aus dem Nachla. Berlin. 1973.

88

31. Это стало известно после опубликования первого тома научного наследства Фреге: G. Frege. Nachgelassene Schriften. Bd. I. Hamburg, 1969. В рецензии на эту книгу, написанной Б. В. Бирюковым и Н. Н. Нуцубидзе и помещенной в издании «Новые книги за рубежом по общественным наукам», 1974, 6, читатель найдет рассказ об эволюции взглядов Фреге под конец жизни и о судьбе его научного наследия, в известном смысле разделившего научную трагедию Фреге.

89

32. Это была известная «теория тинов», разработанная Расселом еще до публикации «Principia Mathematica». О теории типов см. книгу С. К. Клини, указанную в примечании 15.

90

33. Следует вместе с тем заметить, что труд А. Н. Уайтхеда и Б. Рассела (A. N. Whitehead, B. Russell. Principia Mathematica. Vol. I, 1910; vol. II, 1912; vol, III, 1913, Cambridge, Engl.) явился важной: вехой в развитии математической логики и оснований математики. От него в знаяительной мере отправляются последующие работы в этой области, в частности исследования К. Гёделя (см. ниже).

91

1. Развертывание своей философско-матемагической платформы Брауэр начал со статьи «Недостоверность логических принципов», опубликованной в 1908 г. на голландском языке. Хорошее представление о взглядах Браузра дает кн.: Г. Веиль. О философии математики. М.-Л. 1934.

92

2. «Всякая наука. - считал Р. Декарт, заключается в достоверном и очевидном познании, которое есть деятельность интеллекта. Возможны только два действия интеллекта, «посредством которых мы можем придти к познанию вещей, не боясь никаких ошибок, это интуиция и дедукция, «поэтому из всех наук только математика чиста «от всего ложного и недостоверного»,; опытное же познание «часто вводит вас в заблуждение» (Р. Декарт. Набранные произведения. [М.]» 1950, с. 81—86). О параллелях между взглядами Декарта и философскими установками Брауэра см. ниже.

93

3. Что обе они не могут -выполняться— это гарантируется законом противоречия. Этот закон Брауэр не ставил под сомнение.

94

4. Но позиция Брауэра позволяет заключать от отвержения альтернативы , например, путем приведения ее к абсурду, к верности высказывания ~ (этот способ рассуждения признает и конструктивизм, генетически связанный с брауэровской критикой классической математики и логики).

95

5. Цитируется по кн.: E.W. Beth. The Foundations of Mathematics. A Study in the Philosophy of Science. Amsterdam, 1965. p. 618—619.

96

6. Р. Декарт. Избранные произведения, с. 86.

97

7. См., например: Ж. Пиаже. Избранные психологические труды. [М.], 1959.

98

8. А. А. Марков. Комментарии.—В кн.: А. Рейтинг. Интуиционизм. Введение. М., 1965, с. 162.

98

9. При интуиционистской — не связанной с понятием алгоритма — трактовке конструктивности.

99

10. Мы набросали лишь идею доказательства. Точную формулировку теоремы и полное ее доказательство можно найти, скажем, в кн.:

Г.М. Фихтенгольц. Основы математического анализа. Т. I. М.. 1960, с. 105—106.

100

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика