Читаем Жар холодных числ и пафос бесстрастной логики полностью

28. Абстрактное понятие булевой алгебры есть достижение середины нашего века, в то время как его спецификации — на классах и высказываниях — восходят к логикам прошлого века. Применению аппарата булевой алгебры к исследованию релейно-контактных схем начало положили в 1935—1938 гг. В. И. Шестаков, А. Никасима и К. Шеннон, один из создателей кибернетики (см. его статью «Символический анализ релейных и переключательных схем», в русском переводе опубликованную в кн.: К. Шеннон. Работы по теории информации и кибернетике. М., 1963). «Приоритет в применении аппарата математической логики к вопросам электротехники (связанным с построением релейно-контактных схем), — отмечает С. А. Яновская, принадлежит... В. И. Шестакову, работа которого «Алгебра релейно-контактных схем»... написанная еще в январе 1935г., к сожалению, не была своевременно опубликована, хотя и легла в основу его кандидатской диссертации» (Послесловие редакции в кн: А. Тарекии. Введение в логику и методологию дедуктивных наук. М., 1948. с. 320).

60

1. Эти — и другие — высказывания выдающихся мыслителей о математике см. в кн.: Е. Т. Веll. Men of Mathematics. N. Y. 1962, XV—XVII.

61

2. См. об этом в кн.: В. Н. Молодший. Очерки по философским вопросам математики. М., 1969, ч. II, гл. 2.

62

3. Конечную дробь, то есть (периодическую) дробь с «хвостом» из одних нулей (например, 3,14000...) при этом заменяют бесконечной периодической дробью с девяткой в периоде (в нашем примере— дробью 3,13999...).

63

4. Если действительное число есть рациональное число, то есть если десятичная дробь является периодической, то с бесконечностью можно «справиться» тривиальным способом, рассматривая число как дробь p/q, где p и q — целые числа, а q отлично от нуля.

64

5. E. Т. Веll. Men of Mathematics. N. Y., 1962. p. 431.

65

6. С теорией Дедекинда можно подробнее познакомиться по изложению автора. См.: Р. Дедекинд. Что такое числа и для чего они служат. Казань, 1905.

7. См. Г.М. Фихтенгольц. Основы математического анализа. Т. 1. М., 1960, с. 17.

66

8. Априори возможен еще случай, когда в левом классе есть наибольшее число, а в правом — наименьшее. Однако нетрудно показать, что такой случай противоречит свойствам сечения.

67

9. См. об этом подробнее в кн. В. Н. Молодшего, указанной в примечании 2.

68

10. Б. Рассел. История западной философии. М., 1959, с. 56.

69

11. Цитируется по кн.: Н. Бурбаки. Очерки по истории математики. М., 1963. с. 29.

70

12. См. об этом в кн.: История математики. Т. 1. М., 1970, с. 292 и далее.

71

13. См. статью Л. Кальмара, указанную в примечании 13 к гл.1, е.188,

72

14. С основными идеями Г. Кантора можно ознакомиться по трем его работам, имеющимся в русском переводе (опубликованы в издании:

Новые идеи в математике. Вып. 6. Спб, 1914).

73

15. С. К. Клини. Введение в метаматематику. М., 1957, с. 14.

74

16. Этот результат был в определенном смысле обобщением следующего свойства конечных множеств. Пусть дано, скажем, множество из трех элементов М = {а, b, с}. Помимо пустого множества, по определению входящего во всякое множество, и самого множества M, входящего в самое себя, в нем содержатся следующие подмножества: {а}, {b}, {с} {а, b}, {а, с}, {b, с}; таким образом, множество всех подмножеств множества из трех элементов содержит 8, или 23 элементов. Легко доказать, что если исходное множество содержит n элементов, то множество всех его подмножеств будет содержать 2n элементов. Поэтому в случае конечных множеств количественное превосходство производного множества над исходным очевидно. Но когда речь идет о бесконечных множествах, вопрос становится не таким просты»: Кантор доказал, что и в этом случае производное множество превзойдет исходное; правда, здесь уже нельзя будет сказать, что в нем окажется больше элементов — и там и там их бесконечно много, а следует говорить, что оно обладает большей мощностью. Термин «мощность» Кантор определил математически строго. См. гл. I книги С. К. Клини, указанной в примечании 15.

75

17. G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle, 1879; G. Frege. Grundgesetze der Arithmetik, begriffsschrift lich abgeleitet. Bd. I, Jena, 1893; Bd. II, Jena, 1902:

Общую характеристику вклада Фреге в логику и основания математики см. в статье Б. В. Бирюкова «О работах Фреге по философским вопросам математики», помещенной в сборнике «Философские вопросы естествознания», вып. 2, [М], 1959.

76

18. В рассмотренном нами в гл. 3 исчислении равенств это были знаки -> и .

77

19. При этом в интерпретациях этого исчисления — если не иметь в виду интуиционистскую и подобные ей «неклассические» логики, о которых пойдет речь ниже, присутствуют булевы алгебры.

78

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика