Читаем Жар холодных числ и пафос бесстрастной логики полностью

15. Операция пересечения двух произвольных классов (множеств) — это операция, порождающая такой класс — его обычно обозначают А В или просто AВ, как в нашей записи, который состоит из элементов, входящих как в класс A, так и в класс В. В дальнейшем будут использоваться также понятия объединения двух классов и дополнения к классу. Операцией объединения произвольных классов A и В называется операция, порождающая такой класс (он обозначается через A В), который состоит из элементов, входящих хотя бы в один из классов: в A или в В.

Операция взятия дополнения к произвольному классу A (до некоторого объемлющего универсального класса, или универсума, V) есть операция, порождающая класс, состоящий из всех тех и только тех) элементов универсума, которые не входят в класс А; дополнение к А обозначается через A' или -A. Заметим, что операции пересечения и объединения классов обладают свойством коммутативности (перестановочности, симметричности), то есть А В = В А, А В = В А (это свойство используется ниже в примере 3).

32

16. Действительно, по закону исключенного третьего:

A = AB AB' = ABC ABC' AB'C AB'C', A' = A'B A'B' = А'ВС А'ВС' AВ'С А'В'С' но, как очевидно, A A' = V.

33

1. G. Вооlе. The Mathematical Analysis of Logic. Cambridge and London, 1847; G. Вооlе. An Investigation of the Laws of Thought. London, 1854.

34

2. Е. Т. Веll. Men of Mathematics. New York. 1962, p. 433. О своеобразии английской математики того времени, объясняющем тот факт, что математическая логика возникла в Англии, см.: Б. В. Бирюков, А. А. Коноплянки н. Развитие логико-математических идей как элемент исторической подготовки кибернетики (на примере развития английской науки в 19 и начале 20 вв.).— «Вестник истории мировой культуры», 1961, № 6 (30).

35

3. Формулы вида (а & ) и (а V ) мы будем называть соответственно конъюнктивной и дизъюнктивной формулами (или формами, когда появится понятие формы), иногда же просто «конъюнкциями» и «дизъюнкциями».

36

4. Метазнак (греч. «мета» — за, после) — знак, обозначающий знак или конструкцию из знаков данного алфавита и не принадлежащий к этому алфавиту. В данном случае метазнаки обозначают произвольные формулы.

37

5. Строгое определение цепочки равенств выглядит следующим образом: а) каждое равенство есть (одночленная) цепочка равенств;

б) если Х — цепочка равенств, в которой последней формулой справа является формула и =;, то Х= — тоже цепочка равенств:

в) Других цепочек равенств, кроме устанавливаемых на основе пп. а) и б), не имеется.

38

6. Этот список постулатов основан на перечне равносильностей алгебры высказываний, приведенных в кн.: П. С. Новиков. Элементы математической логики. М.» 1973. с. 42.

39

7. Название связано с тем, что в математической логике законы 9 и 10 впервые сформулировал Де Морган. Однако соответствующие правила были известны уже средневековым логикам.

40

8. Вместо этого «общего» правила замены равным в число постулатов можно было бы ввести более «конкретное» правило: если а = то ( & а) = ( & ). (а & ) = ( & ); ( V а) = ( V ), (а V )-( V )» ~а= ~. «Общее» правило замены равным оказывается в этом случае производным правилом: его можно обосновать с помощью «конкретного» правила замены равным.

41

9. Обращаем внимание на то, что мы не стремимся к независимости постулатов нашего аппарата. Например, свойство рефлексивности отношения равенства оказывается в данном построении производным от свойств симметричности и транзитивности этого отношения и каждой из схем аксиом 7, 8, 11—15. Со свойствами отношения равенства можно подробнее ознакомиться по кн.: А. Тарский. Введение в логику и методологию дедуктивных наук. М., 1948, с. 90 и далее. О философских вопросах, связанных в равенством и отождествлением, см: Д. П. Горский. Вопросы абстракции и образование понятий. М., 1961.

42

10. То есть (а -> ) (~а V ), где есть знак «равенства выражений по определению» («графического» их совпадения). Мы будем считать, что к равенствам по определению тоже применимы правила [b] (ср. ниже с. 64—65 и 69—70).

43

11. Различного рода исчисления равенств оказываются весьма полезным инструментом во многих разделах логики и оснований математики (ср. кн.: Р. Л. Гудстеин. Рекурсивный математический анализ. М., 1970, в которой исчисление равенств используется для построения и исследования фрагментов конструктивной математики; о конструктивном направлении в математике см. ниже, гл. 5 и далее). Систематическое представление различных логических систем в виде соответствующих исчислений равенств было осуществлено Г. И. Сыркиным в его курсах лекций «Алгебраические методы в логике», читанных на философском факультете МГУ в 1974—1975 гг. 1

44

12. Столбцы для аргументов от остальной части таблицы мы отделяем двойной вертикальной чертой. Обращаем внимание на то, что фигурирующие в таблицах 0 и 1 не следует смешивать с константами 0 и 1.

45

13. С учетом интерпретации констант 0 и 1, которая будет дана ниже.

46

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика