Читаем Жар холодных числ и пафос бесстрастной логики полностью

Здесь необходимо сделать небольшое отступление, поскольку такое отважное заявление может в разных людях вызвать далеко не одинаковые чувства. Некоторые, мы полагаем, отнесутся к основному рационалистическому тезису Лейбница даже с негодованием, как относились многие еще недавно к утверждениям специалистов по кибернетике, что в будущем ЭВМ смогут взять на себя многие интеллектуальные функции, выполняемые пока только людьми. Откладывая серьезный разбор этого вопроса до того пункта в нашем изложении, когда он будет более подготовлен, заметим лишь, что и в математике, как это выяснилось в тридцатых годах, имеются проблемы, которые принципиально невозможно разрешить с помощью вычисления, и что, с другой стороны, «автоматизированную» процедуру логического или математического вывода нельзя считать тавтологичной, не приносящей новой информации, так что разница между «творчеством» и «вычислением» с позиций современного научного знания становится все менее определенной.

Но вернемся к предложению Лейбница. Существенно отметить, что он придавал важное значение представлению логических действий в виде действий над числами, то есть арифметизации логики. Ему принадлежат следующие слова: «Я заметил, что причина того, почему мы за пределами математики так легко ошибаемся, а геометры столь счастливы в своих умозаключениях, состоит лишь в том, что в геометрии и других частях абстрактной математики можно производить проверку или последовательные доказательства, сводя все к числам, причем делать это можно не только для заключительного предложения, но и в любой момент и на любом шаге, начиная с посылок»[9].

Реализацией описанных идей Лейбница должны были стать разрабатывавшиеся им логические исчисления. В одних из исчислений понятиям, входившим в состав суждений, ставились в соответствие числа и задавались правила оперирования с этими числами, в других употреблялись буквенные обозначения. Возможно, Лейбниц интуитивно принимал «почти доказанную» сейчас гипотезу, что всякую строго и однозначно заданную процедуру (алгоритмическую процедуру), имеющую дело с любыми четко различимыми символами, можно свести к процедуре арифметической — имеющей дело с натуральными числами. Но уверенно «вкладывать» в него понимание эквивалентности вычисления в широком смысле и вычисления в узком смысле было бы рискованным.

Какое же место следует отвести Лейбницу в ряду создателей формализованной логики и кибернетики? Размах и глубина идеи могли бы оправдать претензии даже на первое место, но, как мы знаем, начинание осталось лишь начинанием, и это прискорбное обстоятельство снижает шансы Лейбница стать выше всех в мировой иерархии великих логиков, тем более что в неосуществленности плана повинна не только эпоха, но и разбросанность Лейбница, постоянная размена своего гения на мелочи. Вот как оценивает Лейбница человек, который больше других сделал для второго рождения его идей, Норберт Винер.

«Философия Лейбница, писал Н. Винер в своей «Кибернетике», концентрируется вокруг двух основных идеи, тесно связанных между собой: идеи универсальной символики и идеи логического исчисления.

Из этих двух идей возникли современный математический анализ и современная символическая логика. И как в арифметическом исчислении была заложена возможность развития его механизации от абака и арифмометра до современных сверхбыстрых вычислительных машин, так и в calculus rationator Лейбймца содержится в зародыше amchina rationatuix — думающая машина. Сам Лейбниц, подобно своему предшественнику Паскалю, интересовался созданием вычислительных машин в металле. Поэтому совсем не удивительно, что тот же самый умственный толчок, который привел к развитию математической логики, одновременно привел к гипотетической или действительной механизации процессов мышления»[10].

В другой своей книге Н. Винер пишет о Лейбнице:

«Он интересовался... вычислением при помощи машин и автоматами. Мои взгляды очень далеки от философских взглядов Лейбница. Однако проблемы, которыми я занимаюсь, вполне определенно являются лейбницианскими. Счетные машины Лейбница были только одним из проявлений его интереса к языку вычислений, к логическому исчислению, в свою очередь представлявшему собой, на его взгляд, лишь конкретизацию его идеи о совершенном искусственном языке. Таким образом, даже в своей счетной машине Лейбниц отдавал предпочтение главным образом лингвистике и сообщению»[11].

После того, что мы узнали о Лейбнице и его работах в области логики, нам нужно уточнить соотношение между «аналитическим» и «механическим» путями развития логики. Ведь остается не ясным, к какому из этих направлений склонялся Лейбниц, занимавшийся и проблемами логической символики, и задачей автоматизации рассуждения.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика