Читаем Жар холодных числ и пафос бесстрастной логики полностью

Но для целей, которые преследует Гёдель, недостаточно иметь лишь символы для логических операций и чисел. Нужно выразить также основные арифметические предикаты, такие, как «простое число», «делится нацело» и т. п. В этом месте Гёдель, используя понятия системы РМ и известную в математике процедуру рекурсивного задания функции, то есть задания новых значений функции через предыдущие (рекурсивно, например, определяется функция «факториал» — произведение всех натуральных чисел от единицы до данного числа: (1)0! = 1; (2) (n+ 1)! = (n!) (n + 1)), вводит понятие рекурсивной функции, которое заведомо выразимо средствами формальной арифметики. Делается это так: задаются исходные рекурсивные функции — константа 0 и функция «следования за» — а затем устанавливается способ, с помощью которого из них можно получать более сложные рекурсивные функции. В самом начале этой части работы Гёдель показывает, что такие важные функции, как сложение, умножение и возведение в степень, рекурсивны. Он определяет также понятие рекурсивного арифметического предиката; n-местным арифметическим рекурсивным предикатом (отношением между n числами) называется такой предикат, который определяется уравнением φ (х1, х2,..., хn) = 0, где φ—рекурсивная функция, а х1, х2, ..., >Хn — переменные для чисел. Примером рекурсивного предиката является двуместный предикат «меньше». Рассмотрим этот случай подробнее, так как в дальнейшем нам понадобится представление о рекурсивных функциях и предикатах.

1. Функция δ, определяемая условиями

а) δ(0)=0, б) δ(у+1)= y,

рекурсивна, как выраженная стандартной схемой рекурсии через исходные рекурсивные функции (здесь прибавление единицы к числу следует понимать как взятие следующего числа в натуральном ряду).

2. Функция х ∸ у, определяемая условиями

а) х ∸ О = х, б) х ∸ (у+1)=δ(х ∸ у),

рекурсивна, как выраженная стандартной схемой рекурсии через рекурсивную функцию δ. Как нетрудно убедиться, смысл функции х ∸ у (она называется усеченным вычитанием) таков: функция эта равна х — у, если х >= у и равна нулю, если х < у.

В самом деле, посмотрим, каково значение функции х ∸ у для х, у = 0, 1, 2, 3 (над знаками равенств помечаем какой пункт определений 1, 2 применяется или какое из ранее полученных значений функции х — у используется):

Подобным же образом вычисляется 0∸3=0,0∸4=0 (вообще, легко усматривается, что при дальнейшем возрастании значения у выражение 0 ∸ у будет оставаться равным нулю).

При дальнейшем возрастании значения y выражение 2 ∸ у становится равным нулю. Аналогично вычисляется, что 3 ∸ 0 = 3, 3 ∸ 1 = 2, 3 ∸ 2 = 1, но при y > 2 выражение 3 ∸ y равно нулю.

3. Предикат, опередляемый уравнением х ∸ у = 0, рекурсивен; это очевидно, поскольку функция х ∸ у, как мы показали, рекурсивна. Но смысл этого предиката выражается в обычном языке утверждением x <= у.

Далее, можно показать рекурсивность предиката строгого неравенства, так как для его выражения в формальной системе арифметики нужно использовать теперь только функцию взятия следующего числа («прибавление единицы»).

Несколько раньше введения рекурсивных функций Гёдель осуществляет важную процедуру, которая впоследствии была названа гёделевской нумерацией, или гёделизацией. Это — процедура нумерации всех символов, встречающихся в формальном арифметическом исчислении.

Сначала нумеруются знаки логических операций, вспомогательные символы и другие исходные знаки: символ 0 получает номер 1; символ f — номер 3; символ ~ — номер 5; символ V — номер 7; символ Ɐ — номер 9; символ ), то есть левая скобка, — номер 11; символ ), то есть правая скобка, — номер 13. Таким образом, для нумерации исходных знаков используются нечетные числа от 1 до 13. Символы импликации, конъюнкции и эквиваленции и квантор существования в исчислении Гёделя не фигурируют; эти логические операции могут быть выражены через отрицание, дизъюнкцию и квантор общности.

Далее нумеруются переменные x1, у1, z1,..., вместо которых в арифметические формулы подставляются числа. Для этого используются простые числа, начиная с 17. Аналогичным способом нумеруются предикатные переменные x2, y2, z2,... (переменные, на места которых в формулах подставляются знаки свойств и отношений), только для нумерации используются квадраты простых чисел, начиная с 17 (символ х2 получает номер 172, символа y2— номер 192 и т. д.).

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика