Читаем Жар холодных числ и пафос бесстрастной логики полностью

Затем следует нумерация последовательностей символов (частным случаем которых являются формулы). Здесь правило присвоения номеров таково: если имеется последовательность из k символов, имеющих номера соответственно n1, n2, ... nk, то номер этой последовательности имеет вид: 2n1 * Зn2 * 5n3- ... pknk, где pk — k-тое простое число, начиная с двух. Покажем наглядно, как «работает» в этом случае гёделизация. Пусть дана формула Vх1(х2(х1)) (она читается: «Для всякого натурального числа x1 выполняется свойство х2). Найдем ее гёделев номер. Выпишем по порядку гёделевы номера входящих в формулу символов: 9, 17,11,289,11,17,13,13. Номер N рассматриваемой формулы таков:

N=29 • З17 • 511 • 7289• 1111• 1317 • 1718 • 1913.

Наконец, нумеруются последовательности формул. Если дана последовательность из 5 формул с номерами m1, m2, m3..., ms, то номер последовательности определяется как 2m1 • 3m2 • 5m3 • ... • psms, где ps — 5-тое простое число.

Используя рекурсивные функции, Гёдель показывает, что с помощью проведенной нумерации все «метаарифметические» высказывания, то есть высказывания об арифметических объектах, можно представить как соотношения между числами (гёделевыми номерами). Скажем, утверждение «Данная комбинация символов есть формула» выражается некоторым арифметическим предикатом от гёделева номера этой комбинации n, то есть записывается в виде некоторой арифметической формулы q2n.

Аналогично, утверждение «Данная последовательность формул является доказательством» предстает в виде арифметического предиката от номера этой последовательности. Показывается, что арифметизируются и высказывания вида: «Данная формула есть результат подстановки в такую-то формулу вместо такой-то переменной такой-то формулы», «Данная формула доказуема» (то есть существует последовательность формул, являющаяся доказательством, которая кончается на данной формуле) и т. д. Проведя такую работу, Гёдель показал фактически, что исчисление можно значительно «ужать», эаменив символы, формулы и доказательства некими представляющими их числами, а утверждения о формулах можно превратить в арифметические формулы.

Решающий момент в построении Гёделя наступает тогда, когда он предъявляет формулу, которая представляет в его системе кодировки метавыоказывание о собственной недосказуемости. В этом случае возникает следующая ситуация. Предположим, что формула, говорящая «Я недоказуема», доказуема. Тогда, если логико-арифметическая система непротиворечива — и, значит, все доказуемые в ней формулы (тождественно)истинны[3], данная формула не может быть доказуемой; в самом деле, если бы она была доказуемо и, то заключенное в ней утверждение «Я недоказуема» следует считать истинным, то есть признать формулу недоказуемой[4]. Но данная формула не только недоказуема, но и неопровержима, то есть недоказуемо ее отрицание. Таким образом, формулу, имеющую смысл «Я недоказуема», в системе «типа РМ» нельзя ни доказать, ни опровергнуть —это неразрешимая формула.

Существование же в формальной системе неразрешимой формулы — и к тому же содержательно истинной, так как ее смысл «Я недоказуема» соответствует ситуации в данной системе, означает неполноту системы. Заметим, наконец, что формула с таким смыслом на деле является схемой формул вида «Я формула Ф;, недоказуема», — так что в системе оказывается бесконечное множество неразрешимых высказываний, получаемых различным выбором значений Ф5.

Итак, если формальная арифметика («типа РМ») непротиворечива, то она неполна. А что если она противоречива? Тогда ее теоремы теряют всякую ценность, поскольку в этом случае доказывается, что можно доказать любую наперед заданную теорему —для этого достаточно даже одного-единственного противоречия между доказанной формулой и доказанным ее отрицанием. В этом случае, конечно, гёделева формула, говорящая «Я недоказуема», будет доказуема, но будет доказуемо и ее отрицание. Математики всей душой надеются, что арифметика непротиворечива. Но нельзя ли эту надежду превратить в твердую уверенность и доказать непротиворечивость формальной арифметики?

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика