Исследование Гёделя привело к следующему результату. С помощью своего метода кодировки Геделю удалось доказать в логико-арифметическом исчислении формулу, метаматематический смысл которой таков: «Если формальная арифметика непротиворечива, то формула, говорящая «Я недоказуема», доказуема» (обозначим эту формулу через (*)). Предположим теперь, что мы сумели в рассматриваемом исчислении доказать формулу, утверждающую непротиворечивость формальной арифметики. Тогда, в силу доказанной Гёделем формулы (»), по модесу поненсу следует заключение, что формула, говорящая «Я недоказуема», доказуема. Но это противоречит предыдущей теореме (называемой
Методологическое заключение из этой теоремы (называемой
Мы все время говорим о формальной арифметике, но результаты Гёделя относятся к любому формальному исчислению, достаточно богатому, чтобы содержать в себе арифметику, то есть к исчислению, «начиная с арифметики». Исчисление высказываний беднее арифметики, поэтому на него теорема Гёделя не распространяется — и, как мы знаем, легко доказать его непротиворечивость (оно также полно). Таким образом, работы Гёделя были первыми строгими исследованиями возможностей дедуктивного метода познания. И эти исследования привели к результатам, которые никак не могла предвидеть наука «догелевского» периода.
'Открытия Гёделя вызвали множество толкований. Общим их мотивом — полностью убедительным —- является заключение об определенной внутренней ограниченности регулярных процедур дедуктивного и вычислительного характера, о невозможности представления процесса расширения знания (начиная с математики) и в виде завершенной формальной системы. Как отметил П. С. Новиков, «понятия и принципы всей математики не могут быть полностью выражены никакой формальной системой, как бы мощна она ни была»[6]. Но это так же мало означает дискредитацию метода построения формальных систем, как открытие предельности скорости света — дезавуацию физической теории пространства и времени. Из «ограничительных» результатов математической логики — эти результаты не исчерпывались открытиями Гёделя, о которых шла речь, а получили дальнейшее продолжение в большой серии теорем, касающихся неразрешимости и неполноты формальных теорий, тем более не следует заключение о превосходстве интуиции над разумом.
Гносеологические выводы из теоремы Гёделя нужно делать с большой осторожностью. То, на что наталкивает нас в философском плане эта теорема, высказано Э. Нагелем и Дж. Ньюменом в следующей форме: «Заключения, к которым пришел Гёдель, порождают, естественно, вопрос, можно ли построить вычислительную машину, сравнимую по своим «творческим» математическим возможностям с человеческим мозгом. Современные вычислительные машины обладают некоторым точно фиксированным запасом команд, которые умеют выполнять их элементы и блоки; команды соответствуют фиксированным правилам вывода некоторой формализованной аксиоматической процедуры. Таким образом, машина решает задачу, шаг за шагом выполняя одну из «встроенных» в нее заранее команд. Однако, как видно из гёделевской теоремы о неполноте, уже в элементарной арифметике натуральных чисел возникает бесчисленное множество проблем, выходящих за пределы возможностей любой конкретной аксиоматической системы, а значит, и недоступных для таких машин, сколь бы остроумными и сложными ни были их конструкции и с какой бы громадной скоростью ни проделывали они свои операции. Для каждой конкретной задачи в принципе можно построить машину, которой эта задача была бы под силу, но нельзя создать машину, пригодную для решения любой задачи. Правда, и возможности человеческого мозга могут оказаться ограниченными, так что и человек тогда сможет решить не любую задачу. Но даже если это так, структурные и функциональные возможности человеческого мозга пока еще намного больше по сравнению с возможностями самых изощренных из мыслимых пока машин... Единственный непреложный вывод, который мы можем сделать из гёделевской теоремы о неполноте, состоит в том, что природа и возможности человеческого разума неизмеримо тоньше и богаче любой из известных пока машин»[7].