Чёрч, Тьюринг и Марков подходят к проблеме с разных сторон, кладут в основу своих построений разные «пред-математические» соображения, причем эти соображения, как мы увидим, все более удаляются от представлений классической математической интуиции. И тот факт, что их теории оказались охватывающими в некотором смысле один и тот же круг процессов, явился серьезным подтверждением (хотя и не доказательством) каждого из тезисов: трудно допустить, что ложные построения, основанные на совершенно разных посылках, окажутся в точности совпадающими, в то время как если предположить, что они истинны, такое совпадение объясняется очень просто: истина едина.
Но не только в такой взаимной «подстраховке» состоит значение «множественности» тезисов вычислимости. Если спуститься с небес на землю и говорить не о вычислимости «в принципе», а о конкретной вычислимости, осуществимой не потенциально, а реальным образом, то три аппарата уже окажутся далеко не эквивалентными — каждый из них имеет свои технические особенности, и то, что легко поддается одному аппарату, представляет собой большую сложность для другого. Поэтому для кибернетики, остро интересующейся вычислимостью в реальное время и с реальными ограничениями, наложенными на объем памяти, развитие разных теорий вычислимости представляет большую ценность.
В том же году (1936), когда Чёрч выдвинул свой тезис о рекурсивных функциях, английский математик и логик Алан Тьюринг (1912—1954) в поисках элементарных действий, к которым можно свести всякую процедуру вычисления, решил стать на путь ее «механизации». Он исходил из представления, что механические операции являются наиболее простыми и надежными. Однако Тьюринг был далек от стремления изготовить какой-то механизм из железа или других материалов; его интересовала теоретическая сторона дела. Ему важно было убедиться в принципиальной осуществимости такой машины, которая в состоянии проделать любую вычислительную процедуру[9].
Основное свойство машины Тьюринга — то, что она имеет конечное число «внутренних состояний». Механизмов, обладающих конечным набором состояний, великое множество: это, скажем, выключатель, каретка пишущей машинки, кнопочная система радиоприемника, дверной замок, рычаг коробки передач автомобиля, стрелка электрических часов и т. д. Правда, у всех перечисленных сейчас физических объектов между основными состояниями, число которых конечно, имеются некоторые промежуточные состояния (например, когда стрелка электрочасов «прыгает»), но они осуществляются лишь в переходном режиме на очень короткое время и не играют роли в функционировании механизма. Надо тут же добавить, что, наверное, столь же великое множество приборов и механизмов обладает, в принципе, не дискретным, а непрерывным набором состояний (скажем, логарифмическая линейка). Машина Тьюринга есть аналог механизмов первого класса.
Предполагается, что машина Тьюринга реагирует на знаки из некоторого набора знаков — внешнего алфавита, наносимые в ячейках некоторой (бумажной или иной) ленты; в каждой ячейке может быть нанесен только один знак;
если знак в ячейке отсутствует, считается, что в ней нанесен пустой знак (ячейка с таким знаком называется пустот машина не реагирует ни на какие другие знаки (предпо. латается, что ей никто и не «показывает» других знаков, чтобы не ставить ее в затруднительное положение).
Это предположение тоже естественно. Почтовый автомат который в наши дни расшифровывает написанный по определенному стандарту индекс отделения связи, служит примером того, как несложный механизм может выполнять про. цедуру «опознавания» простых начертаний.
Набор действий, доступных машине Тьюринга, весьма ограничен. Она может выполнить следующие операции:
(1) перейти в другое внутреннее состояние (или остаться в прежнем состоянии);
(2) стереть знак, напечатанный в обозреваемой ею ячейке ленты, напечатать вместо него другой или оставить знак без изменения;
(3) передвинуть бумажную ленту на стандартное расстояние (скажем, на 1 см), соответствующее размеру ячейки, в левую или в правую сторону;
(4) остановиться (например, отключиться от сети, если она электрическая); остановку машины можно понимать как ее переход в особое — заключительное — состояние.
Больше ничего машина Тьюринга делать не способна.