Читаем Жемчужина Эйлера полностью

Последний значительный вклад греков в теорию правильных тел связан с именем Архимеда из Сиракуз. Архимед ввел понятие полуправильных тел. Полуправильное тело, как и правильное, — это выпуклый многогранник, гранями которого являются правильные многоугольники, но эти многоугольники необязательно должны быть одного типа. Кроме того, требуется, чтобы все грани с одинаковым числом сторон были конгруэнтны, а все вершины идентичны (т. е. порядок следования граней, сходящихся в каждой вершине, одинаков, и любую вершину можно повернуть так, что она совпадет с любой другой вершиной, при этом многогранник перейдет в себя). На рис. 5.5 показаны три полуправильных многогранника. Работа Архимеда утрачена, но из следующего отрывка Паппа (ок. 290–350 н. э.) мы знаем, что Архимед нашел тринадцать полуправильных тел:


Хотя можно представить себе геометрические тела с самыми разными гранями, наибольшего внимания заслуживают те, что имеют правильную форму. К ним относятся не только пять тел, найденных богоподобным Платоном. но также тела, общим числом тринадцать, открытые Архимедом и составленные из равносторонних и равноугольных, но не одинаковых многоугольников45.

Рис. 5.5. Три полуправильных многогранника Архимеда


Весь набор из тринадцати многогранников был заново открыт в 1619 году Кеплером, который не знал о работе Архимеда. Как Теэтет доказал, что пять платоновых тел — единственные правильные многогранники, так Кеплер доказал, что существует всего тринадцать полуправильных многогранников. Следует отметить, что существует бесконечно много многогранников, называемых призмами и антипризмами, которые удовлетворяют условиям полуправильности, но исторически не считаются полуправильными телами. В настоящее время полуправильные многогранники называются архимедовыми телами.

После упадка греческой цивилизации центр математической жизни переместился в Персию (современный Ирак[5]). Под покровительством монарха арабские математики перевели многие классические греческие трактаты, в т. ч. работы Евклида, Архимеда, Аполлония, Диофанта, Паппа и Птолемея. Но они были больше, чем хранителями греческих текстов. Они создали алгебру и внесли большой вклад в теорию чисел, системы счисления и тригонометрию. Арабский период доминирования в математике продолжался приблизительно до XV столетия.

Арабские математики развили геометрию, но практически ничего не добавили к теории многогранников. Математике пришлось ждать, когда Европа выйдет из периода Средневековья, — лишь тогда интерес к многогранникам пробудился с новой силой.


Приложения к главе

38. Russell (1967), 37–38.


39. Quoted in Bulmer-Thomas (1976).


40. Там же.


41. van der Waerden (1954), 173.


42. Euler (1862).


43. Cauchy (1813a).


44. Connelly (1977).


45. Quoted in Bulmer-Thomas (1967), 195.


Глава 6

Кеплер и его многогранная Вселенная

Иоганн Кеплер — одна из выдающихся переломных фигур в истории науки: его ум был наполовину поглощен средневековыми фантазиями, но другая половина вынашивала начатки математической науки, сформировавшей современный мир.

— Джордж Симмонс46


Пока арабы развивали математику, Европа погрузилась во мрак Средневековья. Лишь очень немногие европейцы получали формальное образование; великие работы классической античности были почти забыты; ученых-математиков почти не было. В монастырях обучали лишь простейшим основам геометрии и арифметики. В течение 400 лет корпус математических знаний не пополнился ничем сколько-нибудь значительным.

И только с приходом европейского Возрождения в XV веке в математике стало заметно оживление. С подъемом гуманистического движения снова возник интерес к греческим классикам — сначала к греческой литературе, а затем и к математике. Романтика греческой интеллектуальной жизни прекрасно изображена на фреске Рафаэля «Афинская школа» (1510–1511), где показано воображаемое собрание Пифагора, Евклида, Сократа, Аристотеля, Платона и других греческих ученых (рис. 6.1).

Перейти на страницу:

Похожие книги