Первый же шаг Эйлера шел вразрез с этой метрической традицией. Он искал способ сгруппировать, или
Очень быстро выясняется, что классифицировать многогранники подобным образом трудно. Очевидного признака — числа граней — недостаточно, чтобы отличить данный многогранник от всех остальных. Как видно по рис. 7.1, многогранники с одинаковым числом граней могут быть совершенно непохожи.
Рис. 7.1. Три различных многогранника с восемью гранями
Первой блестящей идеей Эйлера было то, что поверхность любого многогранника состоит из 0-, 1- и 2-мерных компонент, а именно вершин (или телесных углов, как он их называл), ребер и граней, и что эти признаки можно подсчитать. Именно эти три величины стали стандартными характеристиками всех топологических поверхностей. Эйлер писал:
Поэтому для любого сплошного тела следует рассматривать три вида границ, а именно: 1) точки, 2) линии и 3) поверхности, или, если использовать названия специально для этой цели: 1) телесные углы, 2) ребра и 3) грани. Эти три вида границ полностью определяют тело57
.Невозможно переоценить важность этого осознания. Как ни странно, пока Эйлер не придумал имя, никто явно не упоминал ребра многогранника. Эйлер, писавший по-латыни, употребил слово
Для граней многогранника Эйлер использовал устоявшийся термин
Мы часто употребляем в быту слово
После того как великий Эйлер сосредоточился на этих трех ключевых признаках — вершинах, ребрах и гранях — и начал выписывать их для различных семейств многогранников, он, вероятно, довольно быстро заметил связь между ними. Можно представить себе удивление Эйлера, когда он открыл, что для любого многогранника имеет место соотношение
V — E + F = 2.
Рис. 7.2. Марка ГДР с изображением Эйлера и его формулы
Конечно же, он был поражен, как этого никто не заметил раньше. Блестящие математики Древней Греции и Возрождения посвятили бесчисленные часы исследованию всех мыслимых аспектов многогранников. Как они могли пройти мимо этого элементарного соотношения?