Однако существует два достойных упоминания, так сказать, брака, получаемых сочетанием фигур, взятых из каждого класса: мужчин, куба и додекаэдра, из класса первичных тел, с женщинами, октаэдром и икосаэдром, из класса вторичных тел. Помимо них, существует фигура, символизирующая целибат, или гермафродита, — тетраэдр, поскольку он вписан сам в себя, подобно тому, как женские фигуры вписаны и, так сказать, подчинены мужским, а признаки их женского пола расположены напротив признаков мужского пола, иными словами, углы противостоят плоским граням54
.Производители игрушек творчески воспользовались свойствами правильных и неправильных многогранников и выпустили многочисленные разновидности экзотических игральных костей. Один такой изобретательный фабрикант даже воспользовался двойственностью правильных многогранников и сделал симметричную круглую кость! На поверхности сферы нарисованы очки, как на кубе (см. рис. 6.9). Во внутренней полости размещен двойственный кубу октаэдр. Тяжелый шарик перекатывается внутри октаэдра, пока не остановится в одной из его вершин. Благодаря весу шарика одна из «граней» кости после остановки оказывается сверху.
Рис. 6.9. Круглая игральная кость
Можно обобщить определение двойственности на неправильные многогранники, хотя определение оказывается более сложным. Тема двойственности постоянно возникает в математике. Мы часто создаем двойственные пары, поменяв местами какую-то ключевую величину. В случае многогранников обращается размерность: нульмерные вершины заменяются двумерными гранями, а двумерные грани — нульмерными вершинами. В других случаях местами меняются верх и низ, положительное и отрицательное и т. д. Иногда объект, больше всего похожий на данный, оказывается его точной противоположностью. Мы вернемся к понятию двойственности в главе 23.
К XVII веку математика стала в Европе академической дисциплиной. Длительный бесплодный период подошел к концу. Многогранники, вновь введенные в обиход художниками, опять оказались предметом математических исследований. В главе 9 мы увидим, что приблизительно в 1630 году Декарт открыл важные свойства многогранников, но мир узнал об этом только в 1860 году. Первого за две тысячи лет заметного вклада в теорию многогранников пришлось ждать до следующего столетия, когда Эйлер сделал свое блистательное открытие.
Приложения к главе
46. Simmons (1992), 69.
47. Koestler (1963), 262.
48. Там же, 252.
49. Kepler (1596), английский перевод Kepler (1981).
50. Kepler (1596), quoted in Gingerich (1973).
51. Kepler (1981), 107.
52. Quoted in Martens (2000), 146.
53. Kepler (1938), английский перевод Kepler (1997).
54. Quoted in Emmer (1993).
Глава 7
Жемчужина Эйлера
«Очевидно» — самое опасное слово в математике.
14 ноября 1750 года газеты должны были бы поместить на первую полосу заголовки «Математик открывает ребро многогранника!».
В тот день Эйлер написал из Берлина письмо своему другу Христиану Гольдбаху, специалисту по теории чисел из Санкт-Петербурга. В предложении, где, на первый взгляд, не было никакой интересной математики, Эйлер описывал «сочленения, по которым соединяются две грани, которые, за неимением общепринятого термина, я буду называть “ребрами”»56
. В действительности это не слишком содержательное определение было первым важным камнем, заложенным в основание того, что впоследствии стало величественной теорией.Одним из блестящих дарований Эйлера была способность консолидировать изолированные математические результаты и выстраивать теоретическую конструкцию, в которой для всего было свое место. В 1750 году он вознамерился проделать это с многогранниками. Он приступил к тому, что, как он надеялся, станет исследованием оснований теории многогранников, или, как он называл ее,
К тому времени теории многогранников было уже с лишком две тысячи лет, но она оставалась чисто геометрической. Математики занимались исключительно