Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство. Поэтому мне пришла в голову мысль, не относится ли она случайно к геометрии положения, которую в свое время исследовал Лейбниц86
.В этом письме Эйлер употребил предложенный Лейбницем термин
В 1736 году Эйлер представил Санкт-Петербургской академии статью «Solutio problematis ad geometriam situs pertinentis» («Решение задачи, относящейся к геометрии положения»)88
, опубликованную в 1741 году. В ней он решил задачу о кёнигсбергских мостах и в свойственной ему манере обобщил решение на любое расположение мостов.Эйлер понял, что в этой задаче важны только относительные положения частей суши и соединяющих их мостов. На рисунке эту ситуацию можно показать просто и элегантно. Поместим вершину в каждую часть суши (по одной на трех берегах и еще одну на острове) и проведем между каждой парой вершин столько ребер, сколько имеется мостов, соединяющих соответствующие части суши. Результирующий граф показан на рис. 11.3.
Рис. 11.3. Граф, ассоциированный с задачей о кёнигсбергских мостах
Таким образом, задача свелась к задаче о графе — можно ли начертить этот граф, не отрывая карандаша от бумаги и не проходя дважды по одному и тому же ребру? Глядя на пример, мы можем сформулировать более общий вопрос: как узнать, можно ли начертить заданный граф таким образом?
Часто думают, что граф кёнигсбергских мостов, показанный на рис. 11.3, приведен в статье Эйлера. Это ошибка — там нет ни кёнигсбергского, ни какого другого графа. Принципы вычерчивания графов развивались независимо от задачи о кёнигсбергских мостах. Головоломки на эту тему появились в начале XIX века как в математических статьях, так и в книгах по развлекательной математике. И лишь в 1892 году У. У. Роуз Болл (1850–1925) в своей популярной книге «Математические задачи и развлечения»89
установил связь между результатом Эйлера о кёнигсбергских мостах и вычерчиванием графов. Впервые кёнигсбергский граф появился в книге Болла спустя сто пятьдесят с лишним лет после публикации статьи Эйлера.Также статью Эйлера часто называют зарождением теории графов. Это утверждение не лишено оснований. Хотя Эйлер не чертил графов в своей статье, его абстрактный подход к проблеме напоминает рассуждения, свойственные теории графов. Его применение новой дисциплины —
Для обсуждения решения нам понадобится несколько определений. Как и в случае многогранников, будем называть
Вычерчивание графа, начинающееся в одной вершине и заканчивающееся в другой, называется
На языке теории графов мы можем переформулировать задачу о кёнигсбергских мостах следующим образом:
Эйлер решил обе эти задачи. В переводе на современный язык решение описывается следующим образом.