Становясь преемником покойного наставника, Кеплер понимал, что эта роль ему пока не по плечу. Браге имел мировую известность и считался величайшим астрономом-наблюдателем со времен Античности. Кеплеру предстояло оправдать свое звание придворного математика, а для этого он должен был сделать открытие, равное или превосходящее по значимости открытие своего предшественника, который осмелился разрушить хрустальные сферы. Он рассчитывал подтвердить свою научную квалификацию, доказав, что ключ к разгадке небесных тайн следует искать в пяти платоновых телах, придуманных пифагорейцами.
С самого начала Кеплер столкнулся с трудностями, типичными для науки в целом, которые определяют роль бритвы Оккама в научном обосновании. Ему предстояло решить проблему выбора модели – серьезнейшая головоломка. В его распоряжении было четыре модели (Птолемея, Коперника, Браге и его собственная), каждая из которых в той или иной степени подтверждала результаты наблюдений, однако не обладала абсолютной точностью. Погрешность каждой составляла от 5 до 10 %. Впрочем, существовала возможность бесконечного увеличения вариантов моделей за счет корректировки и внесения поправок в каждую из них. Например, можно было скорректировать любую из 80 окружностей в модели Птолемея или усложнить модель Коперника за счет дополнительных эпициклов. Однако, располагая неограниченным набором всевозможных моделей, с какой начать?
Мы постоянно сталкиваемся с подобными ситуациями в науке. Достаточно вспомнить продолжавшийся веками схоластический спор о том, к какой из категорий Аристотеля следует относить движение. Или пример из современной науки, когда сторонники теории струн[230] увязли в математических моделях, которых оказалось больше, чем частиц во всей Вселенной. Чтобы двигаться вперед, наука должна владеть инструментом, который позволил бы среди множества сложных и достаточно эффективных моделей найти суперэффективные.
Существует масса критериев выбора модели. Чаще всего выбирается догма, будь то религиозная, историческая или культурная. Ученые, как и обычные люди, склонны принимать решения, следуя собственным предрассудкам. Таким критерием, пусть и неохотно, руководствовался Жан Буридан, им же воспользовался, но уже с большим энтузиазмом, Мартин Лютер, выступая против идеи вращения Земли. Коперник находился в плену давней догмы, когда утверждал, что в его гелиоцентрической модели возможны только круговые орбиты. Кеплер не был исключением: он руководствовался своей убежденностью в правоте древних пифагорейцев. Однако в случае Кеплера выбор модели оказался на редкость удачным: она была простой, и ее легко можно было опровергнуть.
Возможно, простота для Кеплера не имела первостепенного значения, однако она несомненно присутствовала в его теории. Вспомните тот момент озарения во время школьного урока в Граце, когда ему впервые открылся пифагорейский космос. Душевный подъем, пережитый им в тот момент, подпитывался его неоплатоническим убеждением в том, что «в небе, первом творении Бога, заложено больше красоты и величия, чем в его более поздних обыденных творениях»[231]. Говоря о «красоте» или «гармонии» (этот термин тоже часто встречается в его работах), Кеплер имеет в виду понятие математической красоты. Оно подразумевает эстетическое удовольствие, которое испытывают математики, работая с геометрическими, алгебраическими и числовыми структурами, отличающимися гармонией, упорядоченностью, симметрией и, главное, простотой. Например, математиков со времен Античности восхищала красота простой теоремы Пифагора и элегантность ее геометрического доказательства. Через четыре столетия после Кеплера французский математик Анри Пуанкаре напишет: «Ученый изучает природу не потому, что это полезно; он исследует ее потому, что это доставляет ему наслаждение, а это дает ему наслаждение потому, что природа прекрасна… Можно мечтать о мире, полном гармонии, но как далеко его все же оставит за собой действительный мир!.. И это потому, что прекрасна простота, прекрасна грандиозность; потому, что мы предпочтительнее ищем простые и грандиозные факты…»[232],[233] Ему вторит лауреат Нобелевской премии физик Поль Дирак: «Чтобы выразить фундаментальные законы природы в математической форме, ученый прежде всего должен стремиться к математической красоте»[234]. Простота и математика идут рука об руку. На протяжении столетий математики всегда стремились упрощать «некрасивые уравнения», чтобы получать красивые решения. В этом заключается их работа.