И вот, до сих пор считается, что ток в электролитах — это движение ионов, которые как раз бывают однократные, двукратные, и так далее. Всё это здорово — но, дорогой читатель, не терзают ли вас смутные сомнения? Вот в ванне — водный раствор какой-нибудь алюминиевой соли. Алюминий трёхвалентен, и опыт подтверждает, в согласии с законами электролиза Фарадея: для осаждения на катод N атомов алюминия, требуется пропустить через ванну в три раза большее количество электричества, чем для осаждения N одновалентных атомов. Если кто подзабыл: количество прошедшего электричества определяют, измеряя гальванометром силу тока в цепи, и умножая эту силу тока на время, в течение которого ток тёк; а количество осаждённых атомов находят, деля массу осаждённого вещества на массу одного атома. Как видно, вполне прозрачная арифметика. Которая вполне прозрачно намекает на то, что атомы алюминия в растворе и впрямь трижды ионизованы — к торжеству теории электролиза… Эх вы, фанаты мокрых технологий! Знаете, сколько составляет сумма энергий связи трёх внешних электронов алюминия? Аж 53 эВ! Это чудовищная, по химическим меркам, величина. Тепловая трёхкратная ионизация атомов алюминия, при обычных температурах, совершенно исключена. Что же это за силушки богатырские, которые делают из атома алюминия трёхкратный ион в растворе? На это академики, с сурьёзным выраженьем на лице, разъясняют — молекула соли, мол, состоит из уже готовых положительных ионов металла и отрицательных ионов остатка, и дипольные молекулы воды просто растаскивают молекулу соли на эти ионы. Ага. «Просто»! Дяденьки, вы в вузах учились или просто их окончили? Каким это образом пара тройных противоположных зарядов может быть растащена слабо-дипольными молекулами — которые ещё и друг к дружке выстраиваются «мордочкой к попке»? Или эти слабо-дипольные молекулы способны по команде напрячься, да ещё хором пукнуть? Тогда, конечно, никакая молекула соли не устоит. Только, если её таким авральным способом растащат на ионы, что же помешает эти ионам воссоединиться? «Вот это хороший вопрос, — обрадуются академики, потому что на него у них есть хороший ответ. — Каждый ион в воде окружён гидратной оболочкой. Вот они-то, гидратные оболочки, и не дают ионам воссоединяться!» Да… хорошо звучит ответ. Только, дяденьки, вы прикиньте напряжённость «поля», порождаемого ионом на расстоянии от него, равном среднему расстоянию между ионами в воде, и сравните её с напряжённостью «поля», создаваемого электродами — при которой начинает течь ток через электролит. Видите, вторая из них на много порядков меньше первой. Ну, теперь попробуйте объяснить — почему ваши хвалёные гидратные оболочки ведут себя по двойным стандартам. А именно: пресекают воссоединение ионов, но любезно разрешают им двигаться к электродам. Сильную тягу сводят на нет, а несоизмеримо более слабую тягу — вполне допускают!
Дяденьки, если вы такое приемлете, то у вас и деревянный конь обкакается. Ну, признайтесь, что вы не понимаете, как проходит электрический ток через растворы электролитов. А то с ионами вы совсем запутались. Движением ионов электричество и вправду переносится, но где? Ну, например, в слабо ионизованных газах — желательно в разреженных, где это особенно хорошо получается. Или в космическом вакууме — после выстрелов из ионных пушек. А в электролитах — всё по-другому. Нам подсказывают, что продуктами диссоциации там являются вовсе не ионы, а нейтральные атомы и радикалы. А вот окружающие их гидратные оболочки как раз имеют эффективные заряды. Вода — субстанция удивительная, она кишит электричеством; на этом остановимся подробнее.
Не будем перечислять аномальные физические свойства воды — список длинный. «Всё из-за того, что в воде много водородных связей», — бормочут академики, стараясь не смотреть нам в глаза. Это они не от скромности, а от непонимания того, что такое «водородные связи». Ведь если академики не понимают природу обычных химических связей, откуда у них быть пониманию необычных связей, при которых расстояния между связанными атомами в полтора раза больше обычных — т.е. эти атомы, как сказал Гоголь, «