Вот полагают, что ничтожная часть молекул жидкой воды диссоциирована на ионы ОН-
и Н+. Элементарный расчёт показывает, что механизм этой диссоциации — не тепловой. «А какой же?» — с этим вопросом лучше не обращаться к науке, а то ей неудобно станет. Мы же говорим про регулярные переформирования составов молекул воды, с тотальным развалом на радикалы ОН и Н. Так не имеет ли эта картина некоторую электрическую окраску? Ещё как имеет! Когда кислородная связка «протон-электрон» теряет статус валентной, она на некоторое время «зависает» в состоянии максимального отрицательного зарядового разбаланса. Поэтому группа ОН, остающаяся после «отпада» атома водорода, ведёт себя как радикал, имеющий элементарный отрицательный заряд. «Отпавший» же атом водорода в ответ индуцирует максимальный положительный зарядовый разбаланс — проявляя себя при этом как протон. Вот откуда берутся в воде так называемые ионы ОН- и Н+! Это не ионы вовсе — их электрические заряды проимитированы через зарядовые разбалансы! Вода — это своеобразная жидкая плазма, она буквально бурлит электричеством! Тут внимательный читатель заметит, что это бурление, выходит, имеет тотальный характер, затрагивая каждую молекулу воды — а на опыте обнаруживается диссоциация на ионы ОН- и Н+ лишь ничтожного количества молекул. Всё верно — но противоречия здесь нет. Концентрация ионов в растворах определяется через измерения электропроводности — при молчаливом предположении о том, что ионы являются долгоживущими. Но ведь переформирования молекул в воде происходят за характерные химические времена, около 10-11 с, а «ионы» ОН- и Н+ живут и того меньше. Поэтому в случае с водой, вклад в электропроводность дают лишь её тончайшие приэлектродные слои — что и приводит к чудовищному занижению измеряемых концентраций ОН- и Н+. Зато слабый электрический ток через чистую воду возможен при малых напряжениях между электродами. Поэтому Дэви и удалось получить выделение кислорода и водорода на погруженных в воду электродах, присоединённых к вольтову столбу, который давал какую-то пару вольт. Это называется «электролиз» — разложение электричеством. Друзья, да жидкую воду не надо разлагать электричеством — она сама себя разлагает. Успевай только растаскивать продукты разложения на электроды — и будет полный ажур. Кто не верит — пусть попробует получить «электролиз» бензина при паре вольт. А мы посмеёмся. Потому что знаем, что здесь потребуется пробивное напряжение — этак, десятки киловольт. Только, дети, если вы надумаете проводить эти опыты, то имейте в виду, что вряд ли вы сделаете открытие — здесь авторское свидетельство уже выдано:Так вот, значит: вода кишит радикалами ОН-
и Н+ — в этом и секрет её потрясающей химической агрессивности, в том числе мощной растворяющей способности, а также коррозионного воздействия. Странным образом, водную коррозию чёрных металлов теоретики выдают за электрохимическую — через образование гальванической пары металлов и растворение того из них, который имеет более положительный потенциал. Но ведь даже дети знают, что, при контакте с водой, железо не растворяется, а превращается в ржавчину. В школе детям объясняют, что ржавчина — это гидроокись железа… Э! Так это же результат химической реакции! Те дяденьки, которые учат, что при водной коррозии происходит растворение металла, они, что — тупые? Ну, тут ответ неоднозначен. Раньше они не знали про валентные переключения в металлах и в воде. Теперь они про это знать не хотят. Пытаясь во что бы то ни стало сохранить своё невежество, они действуют вполне последовательно. Где же они — «тупые»? Наоборот, вон они какие целеустремлённые! Ну, да не для них будь сказано: радикалы ОН- и Н+, которыми вола кишит, должны легко «садиться» на временно свободные валентные связки атомов металла, замыкая их на себя и постепенно исключая атомы металла из динамической кристаллической решётки. Так и формируется конгломерат гидроокиси. Кстати, становится понятно, почему так эффективен метод защиты от водной коррозии через создание отрицательного потенциала на защищаемом изделии — например, через подключение его к «минусу» источника постоянного напряжения. Отрицательный потенциал позволяет взаимодействовать с изделием радикалам Н+, но не ОН- — поэтому гидроокись, при всём своём желании, образоваться не сможет.