Читаем Жмурки с электричеством полностью

Вот полагают, что ничтожная часть молекул жидкой воды диссоциирована на ионы ОН- и Н+. Элементарный расчёт показывает, что механизм этой диссоциации — не тепловой. «А какой же?» — с этим вопросом лучше не обращаться к науке, а то ей неудобно станет. Мы же говорим про регулярные переформирования составов молекул воды, с тотальным развалом на радикалы ОН и Н. Так не имеет ли эта картина некоторую электрическую окраску? Ещё как имеет! Когда кислородная связка «протон-электрон» теряет статус валентной, она на некоторое время «зависает» в состоянии максимального отрицательного зарядового разбаланса. Поэтому группа ОН, остающаяся после «отпада» атома водорода, ведёт себя как радикал, имеющий элементарный отрицательный заряд. «Отпавший» же атом водорода в ответ индуцирует максимальный положительный зарядовый разбаланс — проявляя себя при этом как протон. Вот откуда берутся в воде так называемые ионы ОН- и Н+! Это не ионы вовсе — их электрические заряды проимитированы через зарядовые разбалансы! Вода — это своеобразная жидкая плазма, она буквально бурлит электричеством! Тут внимательный читатель заметит, что это бурление, выходит, имеет тотальный характер, затрагивая каждую молекулу воды — а на опыте обнаруживается диссоциация на ионы ОН- и Н+ лишь ничтожного количества молекул. Всё верно — но противоречия здесь нет. Концентрация ионов в растворах определяется через измерения электропроводности — при молчаливом предположении о том, что ионы являются долгоживущими. Но ведь переформирования молекул в воде происходят за характерные химические времена, около 10-11 с, а «ионы» ОН- и Н+ живут и того меньше. Поэтому в случае с водой, вклад в электропроводность дают лишь её тончайшие приэлектродные слои — что и приводит к чудовищному занижению измеряемых концентраций ОН- и Н+. Зато слабый электрический ток через чистую воду возможен при малых напряжениях между электродами. Поэтому Дэви и удалось получить выделение кислорода и водорода на погруженных в воду электродах, присоединённых к вольтову столбу, который давал какую-то пару вольт. Это называется «электролиз» — разложение электричеством. Друзья, да жидкую воду не надо разлагать электричеством — она сама себя разлагает. Успевай только растаскивать продукты разложения на электроды — и будет полный ажур. Кто не верит — пусть попробует получить «электролиз» бензина при паре вольт. А мы посмеёмся. Потому что знаем, что здесь потребуется пробивное напряжение — этак, десятки киловольт. Только, дети, если вы надумаете проводить эти опыты, то имейте в виду, что вряд ли вы сделаете открытие — здесь авторское свидетельство уже выдано:

Школьник высокие вольты включил, В чистом бензине пробой получил! Долго за жизнь его бились врачи… От школы остались одни кирпичи…

Так вот, значит: вода кишит радикалами ОН- и Н+ — в этом и секрет её потрясающей химической агрессивности, в том числе мощной растворяющей способности, а также коррозионного воздействия. Странным образом, водную коррозию чёрных металлов теоретики выдают за электрохимическую — через образование гальванической пары металлов и растворение того из них, который имеет более положительный потенциал. Но ведь даже дети знают, что, при контакте с водой, железо не растворяется, а превращается в ржавчину. В школе детям объясняют, что ржавчина — это гидроокись железа… Э! Так это же результат химической реакции! Те дяденьки, которые учат, что при водной коррозии происходит растворение металла, они, что — тупые? Ну, тут ответ неоднозначен. Раньше они не знали про валентные переключения в металлах и в воде. Теперь они про это знать не хотят. Пытаясь во что бы то ни стало сохранить своё невежество, они действуют вполне последовательно. Где же они — «тупые»? Наоборот, вон они какие целеустремлённые! Ну, да не для них будь сказано: радикалы ОН- и Н+, которыми вола кишит, должны легко «садиться» на временно свободные валентные связки атомов металла, замыкая их на себя и постепенно исключая атомы металла из динамической кристаллической решётки. Так и формируется конгломерат гидроокиси. Кстати, становится понятно, почему так эффективен метод защиты от водной коррозии через создание отрицательного потенциала на защищаемом изделии — например, через подключение его к «минусу» источника постоянного напряжения. Отрицательный потенциал позволяет взаимодействовать с изделием радикалам Н+, но не ОН- — поэтому гидроокись, при всём своём желании, образоваться не сможет.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки