Читаем Жмурки с электричеством полностью

«Ладно», — скажем мы, но заметим: ваш «водородный мостик» должен строиться через один атом водорода. Подтверждается ли это структурными исследованиями? Вон же, в 1957 г. проводили нейтронографию монокристаллов тяжёлого льда. Расшифровка картин рассеяния нейтронов показала: пары атомов кислород-кислород связаны через два атома дейтерия. Т.е. в обычном, не тяжёлом, льду водородный мостик строится через два атома водорода, каждый из которых находится на химически обусловленном расстоянии от своего атома кислорода. Новость про два атома водорода в водородном мостике вогнала специалистов в ступор. Ведь если учесть, что на один атом кислорода во льду приходится четыре мостика к четырём соседям, то, в свете структурных исследований, химической формулой воды должна быть Н4О. «Нет, «аш два о» нельзя забижать, — прикидывали теоретики. — Надо придумать чё-нить такое». И вот что придумали: в водородном мостике всё-таки один атом водорода, только он, мол, скачет зайцем туда-сюда — из одного устойчивого положения в другое. Как будто два атома кислорода играют в пинг-понг атомом водорода, понимаете? И, как будто, два атома кислорода при этом связаны. Общее занятие — оно же связывает.

Знаете, дяденьки, подобные популярные объяснения восхитительны, да вот беда: у вас вместо физики — сплошные бытовые аналогии. А ведь есть и физическое объяснение длинных связей в воде — через один атом водорода и в полном согласии с результатами нейтронного зондирования. Не может такого быть, скажете вы. Это потому, что вы погрязли в предрассудке о том, что водородные связи во льду являются стационарными. Сделайте небольшое усилие и допустите, что длинные связи являются переключаемыми, и что, на каждый момент времени, на один атом кислорода во льду приходится, в среднем, две таких связи. А чтобы так получалось, требуется сущий пустячок: чтобы четыре самые длинные атомарные связки «протон-электрон» у кислорода переводились из состояния валентных в состояния невалентных поочерёдно — так, чтобы валентными, на каждый момент времени, были лишь какие-то две из них. Делается это, опять же, чисто программными средствами. Помните, выше мы говорили, что нечто аналогичное вытворяют с атомами металлов? Но у атомов металлов валентные переключения происходят независимо от агрегатного состояния. У атомов кислорода в молекулах воды — это несколько иначе. Режим валентных переключений работает, когда в одну кучу собирается достаточное количество молекул воды. Есть мультик, в котором мартышка пристаёт с вопросами: «Три ореха — это куча? Нет? А — четыре?» С какого количества начинается куча? Так вот, для молекул воды этот вопрос решён, и отнюдь не абстрактно. Собралось вместе такое количество молекул воды, что включился режим валентных переключений, и получилась микрокапелька — значит, собралась куча молекул. И, обратно: капелька уменьшается-уменьшается из-за испарения, и вот в ней молекул становится меньше, чем куча — сразу выключается режим валентных переключений, и микрокапелька испытывает взрывное испарение!

Мы так подробно говорим о валентных переключениях в воде, потому что ими-то и обусловлены динамичность молекулярной структуры воды и её фантастические электрические свойства. Атом водорода в молекуле воды может быть химически присоединён только к валентной кислородной связке «протон-электрон». При потере этой связкой статуса валентной, атом водорода станет свободным и будет присоединён к одному из соседних атомов кислорода — через его связку «протон-электрон», которая стала валентной. Вода в конденсированном состоянии — это не конгломерат молекул, имеющих неизменный состав, а бурлящая на молекулярном уровне среда, в которой каждая молекула регулярно обменивается атомами водорода с соседями. Но это ещё не всё.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки