А теперь, наконец — про чудеса в электролитах. Вот, смотрите — соли металлов. Они химически неустойчивы и гигроскопичны из-за валентных переключений у атомов металлов. Что будет, если такая соль, которая держится на честном слове, окажется в воде, кишащей радикалами ОН-
и Н+? Да ясно, что будет: водичка быстро повыковыривает из соли атомы металла — вот и получится «растворение». Только радикалы ОН- и Н+ будут отнюдь не с равным успехом «цепляться» к атомам металла. Выше мы говорили, что заряды у ОН- и Н+ обусловлены не избытком-недостатком электронов, а зарядовыми разбалансами. Так вот: когда в атоме металла, готовом образовать химическую связь, имеет место отрицательный зарядовый разбаланс, к нему присоединился бы атом водорода с положительным зарядовым разбалансом — но этом атом водорода поворачивается к атому металла своим протоном, а не электроном, и связи не получается. Наоборот, при положительном зарядовом разбалансе в атоме металла, радикал ОН- поворачивается к нему именно электроном, и связь, с большой вероятностью, образуется. Но заметьте, что рядом с нейтральным соединением «металл — группа ОН» остаётся радикал Н+! Если металл трёхвалентен, то рядом с нейтральным соединением «металл — три группы ОН» остаются три радикала Н+! Конечно, связи «металл — ОН» неустойчивы — из-за валентных переключений у атома металла, структура соединения «металл — группы ОН» является динамической. Но в результате формируется динамический гидратный комплекс с эффективным электрическим зарядом, порождаемым радикалами Н+ — в количестве, равном валентности металла. Этими гидратными комплексами и обеспечивается электропрводность водных растворов солей металлов. Никаких тут сказочных ионизаций — всё реалистично. Что касается водных растворов кислот и щелочей, то в первом случае в растворе оказывается избыточное количество радикалов Н+, а во втором — радикалов ОН-. Эти сдвиги электрического равновесия и обеспечивают прохождение электрического тока. И ещё: молекулы спиртов и сахаров тоже содержат группы ОН и Н и отлично растворяются в воде — но эти растворы плохо проводят электрический ток. Странно? Отнюдь: при растворении спиртов и сахаров образуются одинаковые количества радикалов ОН- и Н+ — что эквивалентно добавлению чистой воды.Надо уточнить, что выше мы говорили о постоянном электрическом токе через электролиты. С переменным током через них всё получается гораздо веселее. Неповоротливые гидратные комплексы перестают откликаться своими подвижками на переменное напряжение, начиная уже с довольно низких частот. При частотах в десятки килогерц, весь ток через электролиты обусловлен уже не переносом вещества, а максвелловскими «токами смещения» — т.е. волнами зарядовых разбалансов. На близких к нулю частотах, через водную среду прут гидратные комплексы, что оказывает механическое и тепловое действие. На высоких же частотах, за подвижками зарядовых разбалансов ничего подобного не замечалось. Это мы к тому, что человеческое тело на 75% состоит из водных растворов электролитов. И тогда понятно, почему малое, но постоянное электрическое напряжение может оказаться для человека весьма опасным, а быстропеременное напряжение, с несоизмеримо большей амплитудой, оказывается безвредным. Тесла уверял, что оно даже полезно!
Да, и вот ещё что. Говоря о фантастических электрических свойствах воды, грех умолчать о таком феномене, как структурированность воды, её «память». Это настолько антинаучный феномен, что самые невинные вопросы о нём моментально приводят академиков в бешенство. Ибо они искренне считают: то, чего они не могут объяснить, в природе не существует. А если оно всё-таки существует, то тогда только бешенство и помогает… Смотрите: структурированность воды не может сводиться к наличию в ней молекулярных комплексов, которые держатся на стационарных связях — ведь длинные связи в воде являются принципиально переключаемыми. Но эти переключения могут быть специфически упорядочены — что давало бы соответствующие электрические эффекты.
Вспомним про гидратный комплекс, в центре которого находится атом металла. Его валентные переключения приводят к тому, что нескомпенсированные заряды, имитируемые радикалами Н+
в гидратном комплексе, скачкообразно перемещаются. Должно это сказываться на динамике структурных переключений в окружающей воде? А как же! И если учесть, что скачки положительного заряда в гидратном комплексе происходят циклически, то напрашивается вывод: от гидратного комплекса в воде должны расходиться структурные волны — пока они не потонут в шумах. Структурные волны в воде — это не шутка, дорогой читатель. Похоже, некоторые обитатели морей их неплохо воспринимают! Проводились опыты с акулами: на значительном удалении они быстро и безошибочно реагировали на появление в воде свежей крови — при том, что зрительные или обонятельные восприятия здесь были исключены. Результаты этих опытов были засекречены — чтобы не волновать академиков.