Читаем Значимые фигуры. Жизнь и открытия великих математиков полностью

Если a1 = 0, пусть x1 = 1, в противном случае пусть x1 = 0.

Если b2 = 0, пусть x2 = 1, в противном случае пусть x2 = 0.

Если c3 = 0, пусть x3 = 1, в противном случае пусть x3 = 0.

Если d4 = 0, пусть x4 = 1, в противном случае пусть x4 = 0.

Будем продолжать этот процесс до бесконечности, приравнивая xn либо к 0, либо к 1, так что xn всегда отличается от n-го десятичного знака действительного числа, соответствующего n.

По построению x отличается от любого числа в нашем списке. От первого числа оно отличается в первом знаке, от второго – во втором; в общем, это число отличается от n-го числа в n-м десятичном знаке, а значит, отличается от n-го числа, каким бы оно ни было. Однако мы предполагали, что список существует и что любое действительное число в нем имеется. Это противоречие; получается, что такого списка не существует, следовательно, множество действительных чисел несчетно.

Аналогично строится и другое открытие Кантора, в которое он сам поверил с трудом: что плоскость имеет ту же мощность, что и действительная прямая. Точка на плоскости имеет координаты (x, y), где x и y – действительные числа. Ограничимся, для простоты, единичным квадратом; тогда x и y в десятичной записи выглядят так:

x = 0, x1 x2 x3 x4

y = 0, y1 y2 y3 y4

Поставим этой паре в соответствие точку на прямой, в координатах которой десятичные знаки x и y стоят попеременно, вот так:

0, x1 y1 x2 y2 x3 y3

Поскольку мы можем, глядя на это число, восстановить x и y, отобрав только последовательные цифры на четных или нечетных позициях, такой метод позволяет нам получить взаимно однозначное соответствие между единичным квадратом и единичным отрезком действительной прямой. Несложно расширить этот вывод на всю плоскость и всю числовую прямую. (Необходимо позаботиться о некоторых формальностях, которые я опустил, чтобы разобраться с неоднозначностью десятичного представления числа.)

Был один вопрос, который Кантор никак не мог разрешить ни так, ни этак. Существует ли трансфинитное множество, мощность которого лежала бы строго между ℵ0 и мощностью множества действительных чисел? Кантор считал, что нет; он не смог отыскать такое множество, хотя пробовал на эту роль немало правдоподобных кандидатов. Это предположение получило известность как гипотеза о континууме, или континуум-гипотеза. За дальнейшим ее развитием мы проследим в главе 22.

* * *

На протяжении десяти лет после 1874 г. Кантор все свои усилия сосредоточил на теории множеств; он открыл значение взаимно однозначных соответствий в основании числовой системы и расширил принципы счета на трансфинитные числа. Его работа была настолько оригинальна, что многие современники Кантора были не в состоянии принять ее или поверить в ее значимость. Его математическую карьеру подпортил Кронекер, которому революционные идеи Кантора показались негодными с философской точки зрения. «Целые числа создал Господь Бог, все остальное – дело рук человеческих», – говорил Кронекер.

Кантор, можно сказать, подставился в философском плане, когда недвусмысленно заявил, что теория множеств имеет дело с актуальной бесконечностью, а не с потенциальной бесконечностью Аристотеля. Это некоторое преувеличение, поскольку актуальна эта бесконечность только в концептуальном смысле. В математике, как правило, можно перейти от описания, в котором речь идет, казалось бы, об актуальной бесконечности, к другому описанию, в котором бесконечность уже выглядит чисто потенциальной. Однако переход этот часто кажется надуманным: Кантор был прав, когда говорил, что естественный способ думать о его работе – это рассматривать бесконечность как единое целое, а не как процесс, который хотя и конечен на любом этапе, может продолжаться бесконечно. Непримиримым противником такой позиции был философ Людвиг Витгенштейн. Особенно резко он высказывался о диагональном методе и даже после смерти Кантора продолжал жаловаться на «пагубные подходы теории множеств». Но основная причина, по которой он продолжал громогласно жаловаться, состояла в том, что математики все больше и больше вставали на сторону Кантора и никто из них не обращал внимания на Витгенштейна. Это, наверно, было особенно обидно, потому что самого Витгенштейна очень интересовала философия математики, но, с другой стороны, математики не слишком любят философов, которые упорно твердят, что они, математики, все делают неправильно. Теория множеств работала, а математики в большинстве своем весьма прагматичны, даже в фундаментальных вопросах.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
10 гениев спорта
10 гениев спорта

Люди, о жизни которых рассказывается в этой книге, не просто добились больших успехов в спорте, они меняли этот мир, оказывали влияние на мировоззрение целых поколений, сравнимое с влиянием самых известных писателей или политиков. Может быть, кто-то из читателей помоложе, прочитав эту книгу, всерьез займется спортом и со временем станет новым Пеле, новой Ириной Родниной, Сергеем Бубкой или Михаэлем Шумахером. А может быть, подумает и решит, что большой спорт – это не для него. И вряд ли за это можно осуждать. Потому что спорт высшего уровня – это тяжелейший труд, изнурительные, доводящие до изнеможения тренировки, травмы, опасность для здоровья, а иногда даже и для жизни. Честь и слава тем, кто сумел пройти этот путь до конца, выстоял в борьбе с соперниками и собственными неудачами, сумел подчинить себе непокорную и зачастую жестокую судьбу! Герои этой книги добились своей цели и поэтому могут с полным правом называться гениями спорта…

Андрей Юрьевич Хорошевский

Биографии и Мемуары / Документальное
Клуб банкиров
Клуб банкиров

Дэвид Рокфеллер — один из крупнейших политических и финансовых деятелей XX века, известный американский банкир, глава дома Рокфеллеров. Внук нефтяного магната и первого в истории миллиардера Джона Д. Рокфеллера, основателя Стандарт Ойл.Рокфеллер известен как один из первых и наиболее влиятельных идеологов глобализации и неоконсерватизма, основатель знаменитого Бильдербергского клуба. На одном из заседаний Бильдербергского клуба он сказал: «В наше время мир готов шагать в сторону мирового правительства. Наднациональный суверенитет интеллектуальной элиты и мировых банкиров, несомненно, предпочтительнее национального самоопределения, практиковавшегося в былые столетия».В своей книге Д. Рокфеллер рассказывает, как создавался этот «суверенитет интеллектуальной элиты и мировых банкиров», как распространялось влияние финансовой олигархии в мире: в Европе, в Азии, в Африке и Латинской Америке. Особое внимание уделяется проникновению мировых банков в Россию, которое началось еще в брежневскую эпоху; приводятся тексты секретных переговоров Д. Рокфеллера с Брежневым, Косыгиным и другими советскими лидерами.

Дэвид Рокфеллер

Биографии и Мемуары / История / Образование и наука / Документальное