Здесь мы приводим отрывки из двух глав трактата Пачоли, где он рассказывает о божественной пропорции. Глава VII описывает, как определить золотое сечение, а глава VIII — как вычислить золотое сечение.
Текст переведен с сохранением стиля, в котором трактат был написан, что представляет некоторую сложность для современного читателя. Основная проблема заключается в том, что по сегодняшним меркам рассуждения слишком часто отклоняются в сторону. То, что сегодня является элементарным и преподается в начальной школе, например, равенство дробей, Пачоли вынужден подробно пояснять, часто используя понятие и слово «пропорция». Во времена Пачоли, примерно в 1500 г., математические обозначения еще не были развиты, и понятие формулы было неизвестно. Как видно из текста, автору приходилось объяснять выражения типа
(1 + √5)/2.
используя только слова, а не символы.
Однако ценность этого текста заключается не столько в его исторической важности в связи с золотым сечением, сколько в представлении состояния математики в ту далекую эпоху. В этом смысле работа выдающегося итальянского ученого, его современников и прежде всего достижения их предшественников приобретают еще большее значение, если учитывать то, что они работали в тесных рамках неразвитого математического языка.
ГЛАВА VII
О первом следствии относительно линии, разделенной в соответствии с нашей пропорцией
Пусть прямая линия разделена в крайнем и среднем отношении, потому что именно так ученые называли нашу изысканную пропорцию. Тогда, если к большей части прибавить половину всей пропорционально разделенной линии, обязательно окажется, что квадрат суммы всегда будет пятикратным, то есть в пять раз больше, чем квадрат половины от общей суммы.
Прежде чем продолжить, мы должны сказать, как надлежит понимать и строить названную пропорцию между количествами, и как ученые называли ее в своих книгах. Я утверждаю, что название proportio habens medium et duo extrema означает, что пропорция имеет середину и два края, то есть имеет отношение ко всему трехчастному, ведь каким бы ни было это трехчастное, оно всегда будет иметь середину и два края, ибо без них не представить и середины.