Читаем Золотое сечение [Математический язык красоты] (Мир математики. т.1.) полностью

Лука Пачоли о Божественной пропорции

Здесь мы приводим отрывки из двух глав трактата Пачоли, где он рассказывает о божественной пропорции. Глава VII описывает, как определить золотое сечение, а глава VIII — как вычислить золотое сечение.

Текст переведен с сохранением стиля, в котором трактат был написан, что представляет некоторую сложность для современного читателя. Основная проблема заключается в том, что по сегодняшним меркам рассуждения слишком часто отклоняются в сторону. То, что сегодня является элементарным и преподается в начальной школе, например, равенство дробей, Пачоли вынужден подробно пояснять, часто используя понятие и слово «пропорция». Во времена Пачоли, примерно в 1500 г., математические обозначения еще не были развиты, и понятие формулы было неизвестно. Как видно из текста, автору приходилось объяснять выражения типа

(1 + √5)/2.

используя только слова, а не символы.

Однако ценность этого текста заключается не столько в его исторической важности в связи с золотым сечением, сколько в представлении состояния математики в ту далекую эпоху. В этом смысле работа выдающегося итальянского ученого, его современников и прежде всего достижения их предшественников приобретают еще большее значение, если учитывать то, что они работали в тесных рамках неразвитого математического языка.

ГЛАВА VII

О первом следствии относительно линии, разделенной в соответствии с нашей пропорцией

Пусть прямая линия разделена в крайнем и среднем отношении, потому что именно так ученые называли нашу изысканную пропорцию. Тогда, если к большей части прибавить половину всей пропорционально разделенной линии, обязательно окажется, что квадрат суммы всегда будет пятикратным, то есть в пять раз больше, чем квадрат половины от общей суммы.

Прежде чем продолжить, мы должны сказать, как надлежит понимать и строить названную пропорцию между количествами, и как ученые называли ее в своих книгах. Я утверждаю, что название proportio habens medium et duo extrema означает, что пропорция имеет середину и два края, то есть имеет отношение ко всему трехчастному, ведь каким бы ни было это трехчастное, оно всегда будет иметь середину и два края, ибо без них не представить и середины.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное