Как мы понимаем количество, разделенное согласно пропорции, имеющей середину и два края
Мы должны хорошо знать, что для того, чтобы разделить количество согласно пропорции, имеющей середину и два края, надо образовать две такие неравные части, чтобы произведение меньшей на всю неразделенную величину было равно квадрату большей части. И хотя иногда вместо деления данного количества согласно пропорции, имеющей середину и два края, мы хотим лишь образовать две части с таким условием, чтобы произведение одной части на всю данную величину было равно квадрату другой части, тот, кто хорошо это понимает и является экспертом в данной области, должен свести предложение к нашей пропорции, потому что это никаким другим способом не может быть истолковано. Например, когда говорят: «Разделим 10 на две части так, что, умножая одну часть на 10, мы получим столько, сколько умножая другую часть на саму себя» и рассматривают этот случай и ему подобные в соответствии с предписаниями спекулятивной практики алгебры, или альмукабалы, и с правилом, которое мы по этому вопросу поместили в нашей работе, то получают следующее решение: меньшая часть равна 15 без корня из 125, а большая часть равна корню из 125 без 5. Части, описанные таким образом, иррациональны, и в искусстве они называются вычетами, коих насчитывается 6 видов. Обычно эти части выражаются следующим образом: меньшая равна 15 за вычетом корня из 125. Это означает, что, принимая корень из 125 за число немного большее, чем 11, и вычитая его из 15, мы получим чуть более 3, или чушь меньше 4. А большая часть выражается так: корень из 125 за вычетом 5, и это означает, что, принимая корень из 125 за число немного большее, чем как уже было сказано, и вычитая из него 5, мы получим разность чуть более 6, или чуть меньше 7. Но подобные действия умножения, сложения, вычитания и деления вычетов, двучленов, биномов, корней и прочих рациональных и иррациональных количеств, сложенных и разложенных разными способами, уже были рассмотрены в нашем предыдущем сочинении, и я не стану их повторять в этом трактате, так как мы намереваемся говорить лишь о новых предметах и не возвращаться к уже сказанному.
Для любого количества, разделенного таким образом, всегда имеются три члена, упорядоченные по непрерывной пропорциональности, так что один член будет общим разделенным количеством, то есть большим краем, которым в нашем случае является 10, а другой член будет большей частью, то есть средним, в нашем случае корень из 125 за вычетом 5, а третий — меньшим, то есть 15 за вычетом корня из 125. Между ними получится та же самая пропорция, в которой первый член так относится ко второму, как второй к третьему, и обратно: третий ко второму как второй к первому. И если мы умножим меньший член, 15 за вычетом корня из 125, на больший, 10, будет то же самое, как если мы умножим средний член, то есть корень из 125 за вычетом 5, сам на себя, так как каждое умножение дает нам 150 за вычетом корня из 12500, как и утверждает наша пропорция. Поэтому мы говорим, что 10 разделено в пропорции, имеющей середину и два края, с большей частью, равной корню из 125 за вычетом 5 и с меньшей — 15 за вычетом корня из 125, и обе части иррациональны. И это все, что можно сказать о количестве, разделенном таким образом.