Читаем Золотое сечение [Математический язык красоты] (Мир математики. т.1.) полностью

Как понимать середину и края

После того как мы дали нашей пропорции особенное название, остается объяснить, как следует понимать середину и края в любом количестве и какие условия должны быть выполнены для них для получения божественной пропорции. Для этого мы должны знать, что между тремя членами одного и того же типа обязательно имеются две основных связи или пропорции, а именно: одна — между первым и вторым членами, и другая — между вторым и третьим. Например, пусть имеются три количества одного и того же типа, и мы не видим никаких соотношений между ними. Пусть первое будет а, в числах равное 9, второе — Ь, равное 6, третье — с, равное 4.

Я утверждаю, что между ними имеются две пропорции: одна от а до Ь, то есть от 9 до 6, которую мы в нашей работе называем полуторной, когда больший член содержит меньший и его половину, так как 9 содержит 6 и еще 3, половину от 6, поэтому мы называем ее полуторной. Существует также пропорция от второго, Ь, до третьего, с, то есть от 6 до 4, еще одна полуторная пропорция. Подобны они или нет, нас в данный момент не интересует, потому что мы намерены только показать, что между тремя членами одного и того же рода обязательно имеются две пропорции. Я утверждаю также, что наша божественная пропорция соблюдает одни и те же условия, а именно: между тремя ее членами — средним и двумя крайними — всегда содержатся две пропорции и всегда одного и того же обозначения. И в других пропорциях, будь они непрерывными или обособленными, это происходит бесконечно разными способами, потому что иногда между тремя членами она будет двойной, иногда тройной, и так далее для всех общих типов. Но между серединой и краями нашей пропорции не может быть никаких вариаций, как мы далее увидим (…).

Поэтому мы должны знать, чтобы уметь распознать ее среди различных количеств, что между тремя ее членами обязательно имеется непрерывная пропорциональность, а именно: произведение меньшего члена на сумму меньшего и среднего равно квадрату среднего, и, следовательно, данная сумма обязательно будет ее большим членом. И когда мы находим три количества любого типа, упорядоченных таким образом, мы утверждаем, что они находятся в крайнем и среднем отношении, их больший член всегда равен сумме меньшего и среднего, так что можно сказать, что больший член является целым, разделенным на две части, то есть на меньший и средний члены этой группы. Следует заметить, что эта пропорция не может быть рациональной, ибо нельзя меньший член по отношению к среднему выразить каким-либо числом, даже если больший член рационален, поэтому они всегда будут иррациональны, как будет ясно из дальнейшего.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное