Разобьем его на треугольники, сторона которых в три раза меньше исходной, то есть получим девять маленьких треугольников. Еще три треугольника были добавлены после первого шага, их общая площадь составляет 1/3 от первоначальной площади. Таким образом, мы имеем:
Вокруг каждого маленького треугольника
Рассуждая аналогичным образом, мы видим, что при каждом из следующих шагов мы добавляем 4/9 от площади, добавленной при предыдущем шаге, так что наша общая площадь выражается так:
Упростим это выражение. Вынесем общий множитель за скобки, а к выражению в скобках применим формулу суммы бесконечной геометрической прогрессии:
Таким образом, после бесконечного числа шагов у нас получится кривая бесконечной длины, однако эта кривая ограничивает площадь, которая всего лишь в 1,6 раза больше площади исходного треугольника.
Размерность «снежинки» больше 1 и меньше 2. Давайте вспомним наш первый шаг: мы перешли от отрезка длины 3 к отрезку длины 4. Если бы мы остались на прямой, ее размерность была бы равна 1, потому что 31 = 3. Если бы мы построили квадрат со стороной 3, он бы имел площадь 9, потому что 32 = 9, и размерность 2. При переходе к длине 4 размерность является числом
Как мы видим, размерность является дробным числом. Вот почему Мандельброт использовал латинское слово fractus.
Существует другой вариант этой кривой, который нам очень знаком: антиснежинка Коха. Она строится аналогично снежинке, только при каждом шаге треугольники добавляются внутри исходного треугольника. Эта антиснежинка используется в качестве логотипа японской марки автомобилей.
Но фракталы представляют собой нечто большее, чем забавный математический парадокс: сама природа имеет фрактальную структуру. Чтобы убедиться в этом, достаточно посмотреть на деревья: рост ветвей можно с поразительной точностью смоделировать с помощью фракталов. Существует много фрактальных моделей деревьев, где из каждого сучка под определенным углом растут ветви, длина которых равняется длине предыдущей ветки, умноженной на коэффициент
Эта проблема должна быть решена, если мы хотим иметь корректную модель реальности. Мы должны определить предельные значения множителя
Если мы начнем строить дерево не с прямой линии, а с фигуры, например, с равностороннего треугольника, и в каждой вершине треугольника поместим другой равносторонний треугольник, длина стороны которого равна исходной, умноженной на коэффициент
Романеско (один из культурных сортов капусты Brassica oleracea) является самым красивым примером фракталов в природе, потому что ее структура видна невооруженным глазом, без вычислений и математических формул. Если отрезать любой кусок, его форма всегда будет такой же, как и у целого кочана. Мы можем проверить связь с Ф, посчитав спирали в обоих направлениях. В результате мы получим два числа из последовательности Фибоначчи: 8 и 13 спиралей.
Конец путешествия
Мир фракталов глубок и сложен, мы лишь едва коснулись его. Роль Ф во фрактальных структурах вовсе не ограничивается тем, что мы видели. Но самое интересное заключается в том, что это древнее и прославленное число, появившееся в математике более 20 веков назад, до сих пор встречается в новых областях современной науки. Число Ф не является отслужившей свое игрушкой, оно и сегодня продолжает играть важную роль.
Здесь наше путешествие подошло к концу. Хочется надеяться, что сам путь был столь же интересным, как и пункт назначения. Мы делали много остановок в самых разных областях: живопись, архитектура, астрономия, дизайн и сама природа. Мы подошли к месту, откуда открываются широкие горизонты. Несомненно, нас ждут новые открытия.
Приложение.
Тексты из первоисточников
ГЛАВА V