Читаем Золотое сечение [Математический язык красоты] (Мир математики. т.1.) полностью

Листья шершавого вяза (Ulmus glabra) и фигового дерева (Ficus carica) имеют форму в соответствии с золотой пропорцией.

Наутилус

Раковины моллюсков часто имеют форму «золотой» спирали. Самый характерный пример — это раковина наутилуса (Nautilus pompilius). Раковина увеличивается с добавлением внутренних камер, каждая из которых больше, чем предыдущая, но форма раковины остается прежней. Новая камера добавляется к предыдущей и имеет точно такую же форму, только большего размера.

Спиральная структура наутилуса напоминает по форме водовороты в джакузи или при спускании воды в ванне. Или, в более широком масштабе, спиральные рукава некоторых галактик.

В природе часто встречаются структуры в форме пятиконечной звезды, такие как морская звезда.

Фракталы и золотое сечение

В первой главе мы видели два выражения для Ф: в виде цепной дроби и в виде корня из других корней:

Если продолжить запись одного из этих выражений, то мы получим дробь от дроби, корень от корня и так до бесконечности. Однако посмотрим на последний член выражения, как будто бы в микроскоп. Какой бы член мы ни взяли, он будет в точности похож на исходное выражение. Это мысленное упражнение приводит нас в мир фракталов.

Теория фракталов появилась в 1975 г. с публикацией статьи «Фрактальные объекты: форма, случайность и размерность» академика Бенуа Мандельброта (1924–2010). В предисловии автор объясняет, что термин «фрактальный объект» и «фрактал» происходит от латинского прилагательного fractus, что значит «разбитый, дробленый», или, лучше сказать, «дробный». Два года спустя в книге «Фрактальная геометрия природы» Мандельброт представил новое определение: «множество, размерность Хаусдорфа-Безиковича которого строго больше его топологической размерности». Далее мы попытаемся пояснить эту идею.

Как мы помним, классические геометрические объекты имеют целочисленные размерности: точка имеет размерность ноль, прямая — 1, плоскость — 2, а пространство — 3. Фракталы, напротив, имеют дробную размерность. С нецелой размерностью фракталы не могут обладать «нормальным» объемом и площадью. В фрактальной вселенной такое вполне допустимо. Фрактал размерности более 1 и менее 2 — это поверхность, не ограниченная кривой, или группа прямых линий, не являющаяся двумерной плоскостью.

Бенуа Мандельброт, математик, создатель фрактальной геометрии

Такой является кривая Коха, получаемая в результате повторяющихся геометрических построений, как мы увидим ниже. Если фрактальная размерность находится между 0 и 1, как в так называемом множестве Кантора, то получается множество точек на линии, которые не образуют прямую линию, хотя таких точек бесконечное количество и они бесконечно близки друг к другу. В результате получается забавный геометрический парадокс.

Одной из характерных особенностей фракталов является самоподобие. Другими словами, они сохраняют одну и ту же форму при увеличении или уменьшении размера. Будем ли мы смотреть на них с близкого расстояния или издалека, в целом или на какую-то часть, мы всегда будем видеть одно и то же.

Фрактальные снежинки

Кривая Коха — это фрактал, также называемый «снежинкой Коха» из-за стилизации формы снежинки. Это один из первых фрактальных объектов, описанный в 1906 г. шведским математиком Хельге фон Кохом (1870–1924) задолго до того, как эти объекты получили сегодняшнее название. Давайте посмотрим, как строится кривая Коха и какими свойствами она обладает.

Возьмем равносторонний треугольник и разделим каждую сторону на три равных отрезка. Затем удалим центральную часть на каждой стороне и построим извне равносторонний треугольник со сторонами, равными центральному отрезку, который мы удалили.

Будем повторять этот процесс для каждого построенного маленького равностороннего треугольника. Вскоре станет слишком трудно делать построения с помощью карандаша и бумаги, но компьютер может продолжать процесс очень долго.

Мы можем посчитать периметр и площадь «снежинки Коха». При каждом шаге мы заменяем отрезок длины 3(3 части) на 4 отрезка общей длины 4.

Таким образом, при каждом шаге начальная длина умножается на 4/3. Если изначальный периметр равностороннего треугольника был равен L, после n шагов длина кривой будет

Ln = L∙(4/3)n.

Так как 4/3 больше 1, то значение этого выражения может быть сколь угодно большим! Или в математических терминах, длина кривой Коха, Ln, стремится к бесконечности. Мы можем удлинять ее неограниченно.

Давайте посмотрим, что происходит с площадью. Предположим, что исходный треугольник имеет площадь А = 1.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное