Наутилус
Раковины моллюсков часто имеют форму «золотой» спирали. Самый характерный пример — это раковина наутилуса (Nautilus pompilius). Раковина увеличивается с добавлением внутренних камер, каждая из которых больше, чем предыдущая, но форма раковины остается прежней. Новая камера добавляется к предыдущей и имеет точно такую же форму, только большего размера.
Спиральная структура наутилуса напоминает по форме водовороты в джакузи или при спускании воды в ванне. Или, в более широком масштабе, спиральные рукава некоторых галактик.
Фракталы и золотое сечение
В первой главе мы видели два выражения для Ф: в виде цепной дроби и в виде корня из других корней:
Если продолжить запись одного из этих выражений, то мы получим дробь от дроби, корень от корня и так до бесконечности. Однако посмотрим на последний член выражения, как будто бы в микроскоп. Какой бы член мы ни взяли, он будет в точности похож на исходное выражение. Это мысленное упражнение приводит нас в мир фракталов.
Теория фракталов появилась в 1975 г. с публикацией статьи «Фрактальные объекты: форма, случайность и размерность» академика Бенуа Мандельброта (1924–2010). В предисловии автор объясняет, что термин «фрактальный объект» и «фрактал» происходит от латинского прилагательного fractus, что значит «разбитый, дробленый», или, лучше сказать, «дробный». Два года спустя в книге «Фрактальная геометрия природы» Мандельброт представил новое определение: «множество, размерность Хаусдорфа-Безиковича которого строго больше его топологической размерности». Далее мы попытаемся пояснить эту идею.
Как мы помним, классические геометрические объекты имеют целочисленные размерности: точка имеет размерность ноль, прямая — 1, плоскость — 2, а пространство — 3. Фракталы, напротив, имеют дробную размерность. С нецелой размерностью фракталы не могут обладать «нормальным» объемом и площадью. В фрактальной вселенной такое вполне допустимо. Фрактал размерности более 1 и менее 2 — это поверхность, не ограниченная кривой, или группа прямых линий, не являющаяся двумерной плоскостью.
Такой является кривая Коха, получаемая в результате повторяющихся геометрических построений, как мы увидим ниже. Если фрактальная размерность находится между 0 и 1, как в так называемом
Одной из характерных особенностей фракталов является самоподобие. Другими словами, они сохраняют одну и ту же форму при увеличении или уменьшении размера. Будем ли мы смотреть на них с близкого расстояния или издалека, в целом или на какую-то часть, мы всегда будем видеть одно и то же.
Фрактальные снежинки
Кривая Коха — это фрактал, также называемый «снежинкой Коха» из-за стилизации формы снежинки. Это один из первых фрактальных объектов, описанный в 1906 г. шведским математиком Хельге фон Кохом (1870–1924) задолго до того, как эти объекты получили сегодняшнее название. Давайте посмотрим, как строится кривая Коха и какими свойствами она обладает.
Возьмем равносторонний треугольник и разделим каждую сторону на три равных отрезка. Затем удалим центральную часть на каждой стороне и построим извне равносторонний треугольник со сторонами, равными центральному отрезку, который мы удалили.
Будем повторять этот процесс для каждого построенного маленького равностороннего треугольника. Вскоре станет слишком трудно делать построения с помощью карандаша и бумаги, но компьютер может продолжать процесс очень долго.
Мы можем посчитать периметр и площадь «снежинки Коха». При каждом шаге мы заменяем отрезок длины 3(3 части) на 4 отрезка общей длины 4.
Таким образом, при каждом шаге начальная длина умножается на 4/3. Если изначальный периметр равностороннего треугольника был равен
Так как 4/3 больше 1, то значение этого выражения может быть сколь угодно большим! Или в математических терминах, длина кривой Коха,
Давайте посмотрим, что происходит с площадью. Предположим, что исходный треугольник имеет площадь